scholarly journals Surface Properties of Polymeric Composites with Silver Nanoparticles

2018 ◽  
Vol 26 (6(132)) ◽  
pp. 114-119 ◽  
Author(s):  
Magdalena Ziąbka ◽  
Michał Dziadek

The aim of this study was to investigate the surface properties of polymeric composites and the osteoblastic cell behaviour set in direct contact with the biomaterials tested. The surface properties were evaluated before and after 6-month incubation in an in vitro environment. The composite materials were prepared by means of extrusion and injection moulding. Three commercially available thermoplastic polymers (ABS (poly)acrylonitrile butadiene styrene) were used as composite matrices. Antibacterial silver nanoparticles (AgNPs) were added as a modifying phase. Surface properties of the materials tested, such as: wettability, roughness and microstructure, were determined. Furthermore the morphology of Saos-2 human osteoblastic cells in direct contact with the composite materials was assessed after the 7-day culture. The addition of silver nanoparticles caused minor changes in the wettability and roughness values. As light modification, the silver nanoparticles influenced the microstructure. The osteoblasts displayed the proper morphology and they evenly settled on the surface of the pure polymer and composite materials, which indicated the material cytocompatibility.

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1122
Author(s):  
Przemysław Pączkowski ◽  
Andrzej Puszka ◽  
Malgorzata Miazga-Karska ◽  
Grażyna Ginalska ◽  
Barbara Gawdzik

This paper presents the properties of the wood-resin composites. For improving their antibacterial character, silver nanoparticles were incorporated into their structures. The properties of the obtained materials were analyzed in vitro for their anti-biofilm potency in contact with aerobic Gram-positive Staphylococcus aureus and Staphylococcus epidermidis; and aerobic Gram-negative Escherichia coli and Pseudomonas aeruginosa. These pathogens are responsible for various infections, including those associated with healthcare. The effect of silver nanoparticles incorporation on mechanical and thermomechanical properties as well as gloss were investigated for the samples of composites before and after accelerating aging tests. The results show that bacteria can colonize in various wrinkles and cracks on the composites with wood flour but also the surface of the cross-linked unsaturated polyester resin. The addition of nanosilver causes the death of bacteria. It also positively influences mechanical and thermomechanical properties as well as gloss of the resin.


2013 ◽  
Vol 41 ◽  
pp. e41-e44 ◽  
Author(s):  
Fernanda Ferreira Jassé ◽  
Edson Alves de Campos ◽  
Dorien Lefever ◽  
Enrico Di Bella ◽  
Jean Pierre Salomon ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Jenel Marian Patrascu ◽  
Ioan Avram Nedelcu ◽  
Maria Sonmez ◽  
Denisa Ficai ◽  
Anton Ficai ◽  
...  

This paper presents the synthesis, characterisation, andin vitrotesting of homogenous and heterogeneous materials containing silver nanoparticles (nanoAg). Three types of antiseptic materials based on collagen (COLL), hydroxyapatite (HA), and collagen/hydroxyapatite (COLL/HA) composite materials were obtained. The synthesis of silver nanoparticles was realized by chemical reaction as well as plasma sputtering deposition. The use of chemical reduction allows the synthesis of homogenous materials while the plasma sputtering deposition can be easily used for the synthesis of homogeneous and heterogeneous support. Based on thein vitroassays clear antiseptic activity againstEscherichia coliwas relieved even at low content of nanoAg (10 ppm).


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 197 ◽  
Author(s):  
Magdalena Ziąbka ◽  
Michał Dziadek ◽  
Kinga Pielichowska

Acrylonitrile butadiene styrene/silver nanoparticles (ABS/AgNPs) composites were manufactured through the plastic processing method. Three different matrices were used to obtain polymer and composite samples containing 0.5 wt % and 1.0 wt % of silver nanoparticles, respectively. The aim of this study was to examine physicochemical properties and stability of the materials in the in vitro conditions for two years. The results showed that composites made from amorphous matrices had comparable mechanical properties after incorporation of AgNPs. The values of Young modulus and tensile strength increased after the first and second year of investigation. Silver nanoparticles did not alter the surface parameters—e.g., roughness and contact angle also retained stable values after the in vitro incubation in water solution. The scanning electron observation revealed homogeneous distribution of silver modifier in all the matrices. The 24-month incubation of materials proved the stability of the composites microstructure. The DSC analysis revealed that addition of AgNPs may decrease glass transition temperature of the composite materials which was also reduced after 12 and 24 months of incubation. The attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopic studies did not indicate significant changes in the ABS matrices either upon their modification with AgNPs or after the long-term testing. The conducted studies proved that all the composites are stable and may be used for a long-term working period.


2016 ◽  
Vol 702 ◽  
pp. 83-90 ◽  
Author(s):  
Sunil Prasad ◽  
Vikas Kr Vyas ◽  
Md Ershad ◽  
Ram Pyare

Bio-glass® and hydroxyapatite (Ca10 (PO4)6(OH) 2, HA) has been widely used as a bone replacement material in restorative dental and orthopedic implants. In order to analyze in vitro bioactivity bio-composite before and after exposed to simulated body fluid (SBF) solution for different time periods were investigated by fourier transform infrared (FTIR) reflectance spectrometer with measuring the pH and concentration of silicon, sodium, calcium, phosphorus and manganese ions in SBF solution. The prepared bio-composites were assessed by XRD, FTIR, mechanical properties. FTIR confirmed the presence of a rich bone like apatite layer post-immersion on the composite surface. It has been found that the new BG/HA bio-composite materials have high bioactivity properties. These bio-composite materials are promising for medical applications such as bone substitutes.


Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 61 ◽  
Author(s):  
Magdalena Ziąbka ◽  
Michał Dziadek

The aim of this study was to investigate the mechanical properties of polymeric composites prepared via extrusion and injection moulding. Four stable thermoplastic polymers were used as composites matrices (two kinds of polymethyl methacrylate and two kinds of co-polymer acrylonitrile-butadiene-styrene). Silver nanoparticles AgNPs were used as a modifying phase. Mechanical properties of testes materials were determined during the uniaxial stretching. Surface properties such as roughness and contact angle were also evaluated. The materials’ stability was assessed using scanning electron microscopy and non-destructive ultrasonic testing. All measurements were carried out at time intervals, determining both the initial parameters and after 6 and 12 months of incubation in deionized water. The obtained results proved that neither the preparation technology nor the amount of the modifier adversely affect the mechanical properties of the tested composites. The incorporated modifier does not change the surface properties significantly. The studies conducted after the materials’ incubation in water indicate their stability.


Author(s):  
S.K. Aggarwal

The proposed primary mechanism of action of the anticancer drug cisplatin (Cis-DDP) is through its interaction with DNA, mostly through DNA intrastrand cross-links or DNA interstrand cross-links. DNA repair mechanisms can circumvent this arrest thus permitting replication and transcription to proceed. Various membrane transport enzymes have also been demonstrated to be effected by cisplatin. Glycoprotein alkaline phosphatase was looked at in the proximal tubule cells before and after cisplatin both in vivo and in vitro for its inactivation or its removal from the membrane using light and electron microscopy.Outbred male Swiss Webster (Crl: (WI) BR) rats weighing 150-250g were given ip injections of cisplatin (7mg/kg). Animals were killed on day 3 and day 5. Thick slices (20-50.um) of kidney tissue from treated and untreated animals were fixed in 1% buffered glutaraldehyde and 1% formaldehyde (0.05 M cacodylate buffer, pH 7.3) for 30 min at 4°C. Alkaline phosphatase activity and carbohydrates were demonstrated according to methods described earlier.


Author(s):  
Henry H. Eichelberger ◽  
John G. Baust ◽  
Robert G. Van Buskirk

For research in cell differentiation and in vitro toxicology it is essential to provide a natural state of cell structure as a benchmark for interpreting results. Hypothermosol (Cryomedical Sciences, Rockville, MD) has proven useful in insuring the viability of synthetic human epidermis during cold-storage and in maintaining the epidermis’ ability to continue to differentiate following warming.Human epidermal equivalent, EpiDerm (MatTek Corporation, Ashland, MA) consisting of fully differentiated stratified human epidermal cells were grown on a microporous membrane. EpiDerm samples were fixed before and after cold-storage (4°C) for 5 days in Hypothermosol or skin culture media (MatTek Corporation) and allowed to recover for 7 days at 37°C. EpiDerm samples were fixed 1 hour in 2.5% glutaraldehyde in sodium cacodylate buffer (pH 7.2). A secondary fixation with 0.2% ruthenium tetroxide (Polysciences, Inc., Warrington, PA) in sodium cacodylate was carried out for 3 hours at 4°C. Other samples were similarly fixed, but with 1% Osmium tetroxide in place of ruthenium tetroxide. Samples were dehydrated through a graded acetone series, infiltrated with Spurrs resin (Polysciences Inc.) and polymerized at 70°C.


Author(s):  
Pınar Ercan ◽  
Sedef Nehir El

Abstract. The goals of this study were to determine and evaluate the bioaccessibility of total anthocyanin and procyanidin in apple (Amasya, Malus communis), red grape (Papazkarası, Vitis vinifera) and cinnamon (Cassia, Cinnamomum) using an in vitro static digestion system based on human gastrointestinal physiologically relevant conditions. Also, in vitro inhibitory effects of these foods on lipid (lipase) and carbohydrate digestive enzymes (α-amylase and α-glucosidase) were performed with before and after digested samples using acarbose and methylumbelliferyl oleate (4MUO) as the positive control. While the highest total anthocyanin content was found in red grape (164 ± 2.51 mg/100 g), the highest procyanidin content was found in cinnamon (6432 ± 177.31 mg/100 g) (p < 0.05). The anthocyanin bioaccessibilities were found as 10.2 ± 1%, 8.23 ± 0.64%, and 8.73 ± 0.70% in apple, red grape, and cinnamon, respectively. The procyanidin bioaccessibilities of apple, red grape, and cinnamon were found as 17.57 ± 0.71%, 14.08 ± 0.74% and 18.75 ± 1.49%, respectively. The analyzed apple, red grape and cinnamon showed the inhibitory activity against α-glucosidase (IC50 544 ± 21.94, 445 ± 15.67, 1592 ± 17.58 μg/mL, respectively), α-amylase (IC50 38.4 ± 7.26, 56.1 ± 3.60, 3.54 ± 0.86 μg/mL, respectively), and lipase (IC50 52.7 ± 2.05, 581 ± 54.14, 49.6 ± 2.72 μg/mL), respectively. According to our results apple, red grape and cinnamon have potential to inhibit of lipase, α-amylase and α-glucosidase digestive enzymes.


1994 ◽  
Vol 71 (04) ◽  
pp. 499-506 ◽  
Author(s):  
Mark W C Hatton ◽  
Bonnie Ross-Ouellet

SummaryThe behavior of 125I-labeled recombinant hirudin towards the uninjured and de-endothelialized rabbit aorta wall has been studied in vitro and in vivo to determine its usefulness as an indicator of thrombin activity associated with the aorta wall. Thrombin adsorbed to either sulfopropyl-Sephadex or heparin-Sepharose bound >95% of 125I-r-hirudin and the complex remained bound to the matrix. Binding of 125I-r-hirudin to the exposed aorta subendothelium (intima-media) in vitro was increased substantially if the tissue was pre-treated with thrombin; the quantity of l25I-r-hirudin bound to the de-endothelialized intima-media (i.e. balloon-injured in vitro) correlated positively with the quantity of bound 131I-thrombin (p <0.01). Aortas balloon-injured in vivo were measured for thrombin release from, and binding of 125I-r-hirudin to, the de-endothelialized intimal surface in vitro; 125I-r-hirudin binding correlated with the amount of active thrombin released (p <0.001). Uptake of 125I-r-hirudin by the aorta wall in vivo was proportional to the uptake of 131I-fibrinogen (as an indicator of thrombin activity) before and after balloon injury. After 30 min in the circulation, specific 125I-r-hirudin binding to the uninjured and de-endo- thelialized (at 1.5 h after injury) aorta wall was equivalent to 3.4 (± 2.5) and 25.6 (±18.1) fmol of thrombin/cm2 of intima-media, respectively. Possibly, only hirudin-accessible, glycosaminoglycan-bound thrombin is measured in this way.


Sign in / Sign up

Export Citation Format

Share Document