scholarly journals A Chitosan-Based Micellar System as Nanocarrier For the Delivery of Paclitaxel

Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 380 ◽  
Author(s):  
Yang Han ◽  
Na Liang ◽  
Pengfei Yan ◽  
Yoshiaki Kawashima ◽  
Fude Cui ◽  
...  

In this study, a redox-sensitive chitosan derivative with modifications by cholesterol, sulfhydryl, and mPEG (mPEG-CS(SH)-CHO) was successfully synthesized and characterized. Due to its amphiphilicity, the conjugate could spontaneously form micelles in an aqueous environment. The optimized paclitaxel (PTX)-loaded mPEG-CS(SH)-CHO micelles, with a mean diameter of 158 nm, zeta potential of +26.9 mV, drug loading of 11.7%, and entrapment efficiency of 88.3%, were successfully prepared. The results of an XRD study demonstrated that PTX was loaded in the core of the micelles in a non-crystalline state. Inspiringly, the PTX-loaded micelles possessed excellent anticancer effect but low toxicity to the body. It can be concluded that the mPEG-CS(SH)-CHO micellar system is a promising drug delivery carrier for the controlled release of PTX.

Author(s):  
Sanjoy Das ◽  
Malay K. Das

Objective: Site-specific drug delivery into the colonic region is extremely fascinating for local treatment of various colonic diseases like ulcerative colitis, colon cancer but it should be capable of saving the drug from hydrolysis and degradation. The present study reports the application of jackfruit seed starch and its thiol derivative as a drug delivery carrier for the colon. Methods: The starch was extracted from the jackfruit seeds by water extraction method and modified by the esterification reaction with thioglycolic acid. The thiolated starch was characterized for morphology, functional and flow properties. The safety profile of the thiolated starch was confirmed by acute toxicity study in a mice model as per OECD guidelines 423. The microspheres based on thiolated starch were prepared by ionic gelation method incorporating Ibuprofen as a model drug. The prepared microspheres were characterized for particle size, drug entrapment efficiency, drug loading, compatibility study, surface morphology, in vitro drug release and release kinetics. Results: The result attributed that starch was successfully modified by the thiolation with a degree of substitution of 3.30. The size of prepared microspheres ranges from 825.5±4.58 to 857±6.24 µm, the entrapment efficiencies ranges from 69.23±1.19 to 76.15±0.83 % and the drug loading capacity ranges from 17.75±0.30 to 46.05±0.49 %. The FT-IR, DSC and XRD studies confirmed that there is no interaction within drug and excipients. The thiolated starch microspheres show the maximum release of drug at pH 7.4 in the presence of rat caecal content as compared to pH 1.2 and pH 6.8 for up to 24 h and are following first order release kinetics. Conclusion: These results suggest the application of thiolated jackfruit seed starch could be promising as a long-term drug delivery carrier for the colon.


Author(s):  
Deepak Singh ◽  
Prashant Upadhyay

Aim: Because of its many actions, curcumin, a plant-derived polyphenolic substance found naturally in turmeric (Curcuma longa), has been the focus of a significant investigation. The utilization of safe, useful, and highly functional chemicals obtained from natural sources in human nutrition/prevention/therapy needs some modifications to achieve multifunctionality, enhance the bioavailability, and delivery methods, all to enhance their efficacy. Curcumin's limited water solubility, fast metabolism and removal from the body, and hence low bioavailability, are significant obstacles to its use. To address these issues, a variety of new drug delivery systems with multiple routes of administration have evolved. Encapsulating the medication in vesicular structures is one such technique that, if successful in enabling selective absorption, can be predicted to extend the drug's life in systemic circulation and reduce toxicity. As a result, several vesicular drug delivery methods, including liposomes, niosomes, transfersomes, and pharmacosomes, have been developed. Since then, developments in vesicular drug delivery have resulted in the creation of systems that enable drug targeting as well as the prolonged or controlled release of traditional medications. The present study aimed to develop and characterize curcumin-loaded niosomes. Design of Study: In present study 32 factorial method was used to formulate different formulations of niosomes containing curcumin. Place and Duration of Study: Department of Pharmacy, IFTM University Moradabad, From December to May 2021. Methodology: Various niosomal formulations of curcumin were developed by using surfactant and cholesterol by thin-film hydration technique. Total 9 formulations were developed and characterized (32 factorial designs). Results: Formulation N7 was considered as an optimized formulation since formulation F7 has maximum drug entrapment and a prolonged drug release rate. The present study suggests that the concentration of surfactant and cholesterol affects % drug loading efficiency of niosomes. The percentage entrapment efficiency of niosomes increases on the increasing concentration of surfactant (Span 60) and cholesterol but above a certain concentration of cholesterol further increment in cholesterol concentration reduces drug entrapment efficiency of niosomes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yao Sun ◽  
Guoliang Liu ◽  
Kai Zhang ◽  
Qian Cao ◽  
Tongjun Liu ◽  
...  

AbstractExosomes are extracellular vesicles secreted by various cells, mainly composed of lipid bilayers without organelles. In recent years, an increasing number of researchers have focused on the use of exosomes for drug delivery. Targeted drug delivery in the body is a promising method for treating many refractory diseases such as tumors and Alzheimer's disease (AD). Finding a suitable drug delivery carrier in the body has become a popular research today. In various drug delivery studies, the exosomes secreted by mesenchymal stem cells (MSC-EXOs) have been broadly researched due to their immune properties, tumor-homing properties, and elastic properties. While MSC-EXOs have apparent advantages, some unresolved problems also exist. This article reviews the studies on MSC-EXOs for drug delivery, summarizes the characteristics of MSC-EXOs, and introduces the primary production and purification methods and drug loading methods to provide solutions for existing problems and suggestions for future studies.


2017 ◽  
Vol 5 (04) ◽  
pp. 29-33
Author(s):  
Naresh Kalra ◽  
G. Jeyabalan

Drug delivery systems are defined as formulations aim for transportation of a drug to the desired area of action within the body. The aim of the study was to investigate the feasibility of using Niosomes as a drug delivery system for Cisplatin By entrapment of drug in Niosomes, dose also could be reduced. Niosomes were prepared by Ethanol injection method using cholesterol and Surfactant. Particle size, zeta potential, entrapment efficiency and in vitro drug release studies were performed. The targeted niosome delivery system is composed of drug, surfactant and cholesterol. With regard to the influence of formulation variables on the percent drug loading (PDL), different compositions with varying ratios of surfactant and cholesterol were studied. In –Vitro drug release mechanism was studied for 24 hours.


Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1210
Author(s):  
Xieguo Yan ◽  
Shiqiang Wang ◽  
Kaoxiang Sun

Schizophrenia, a psychiatric disorder, requires long-term treatment; however, large fluctuations in blood drug concentration increase the risk of adverse reactions. We prepared a long-term risperidone (RIS) implantation system that can stabilize RIS release and established in-vitro and in-vivo evaluation systems. Cumulative release, drug loading, and entrapment efficiency were used as evaluation indicators to evaluate the effects of different pore formers, polymer ratios, porogen concentrations, and oil–water ratios on a RIS implant (RIS-IM). We also built a mathematical model to identify the optimized formulation by stepwise regression. We also assessed the crystalline changes, residual solvents, solubility and stability after sterilization, in-vivo polymer degradation, pharmacokinetics, and tissue inflammation in the case of the optimized formulation. The surface of the optimized RIS microspheres was small and hollow with 134.4 ± 3.5 µm particle size, 1.60 SPAN, 46.7% ± 2.3% implant drug loading, and 93.4% entrapment efficiency. The in-vitro dissolution behavior of RIS-IM had zero-order kinetics and stable blood concentration; no lag time was released for over three months. Furthermore, the RIS-IM was not only non-irritating to tissues but also had good biocompatibility and product stability. Long-acting RIS-IMs with microspheres and film coatings can provide a new avenue for treating schizophrenia.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 904
Author(s):  
Irin Tanaudommongkon ◽  
Asama Tanaudommongkon ◽  
Xiaowei Dong

Most antiretroviral medications for human immunodeficiency virus treatment and prevention require high levels of patient adherence, such that medications need to be administered daily without missing doses. Here, a long-acting subcutaneous injection of lopinavir (LPV) in combination with ritonavir (RTV) using in situ self-assembly nanoparticles (ISNPs) was developed to potentially overcome adherence barriers. The ISNP approach can improve the pharmacokinetic profiles of the drugs. The ISNPs were characterized in terms of particle size, drug entrapment efficiency, drug loading, in vitro release study, and in vivo pharmacokinetic study. LPV/RTV ISNPs were 167.8 nm in size, with a polydispersity index of less than 0.35. The entrapment efficiency was over 98% for both LPV and RTV, with drug loadings of 25% LPV and 6.3% RTV. A slow release rate of LPV was observed at about 20% on day 5, followed by a sustained release beyond 14 days. RTV released faster than LPV in the first 5 days and slower than LPV thereafter. LPV trough concentration remained above 160 ng/mL and RTV trough concentration was above 50 ng/mL after 6 days with one subcutaneous injection. Overall, the ISNP-based LPV/RTV injection showed sustained release profiles in both in vitro and in vivo studies.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Qiao Wang ◽  
Wenjin Liu ◽  
Junjun Wang ◽  
Hong Liu ◽  
Yong Chen

Abstract In this study, daidzein long-circulating liposomes (DLCL) were prepared using the ultrasonication and lipid film-hydration method. The optimized preparation conditions by the orthogonal design was as follows: 55 to 40 for the molar ratio of soybean phosphatidylcholine (SPC) to cholesterol, 1 to 10 for the mass ratio of daidzein to total lipid (SPC and cholesterol) (w:w), the indicated concentration of 5% DSPE-mPEG2000 (w:w), 50 °C for the hydration temperature, and 24 min for the ultrasonic time. Under these conditions, the encapsulation efficiency and drug loading of DLCL were 85.3 ± 3.6% and 8.2 ± 1.4%, respectively. The complete release times of DLCL in the medium of pH 1.2 and pH 6.9 increased by four- and twofold of that of free drugs, respectively. After rats were orally administered, a single dose of daidzein (30 mg/kg) and DLCL (containing equal dose of daidzein), respectively, and the MRT0−t (mean residence time, which is the time required for the elimination of 63.2% of drug in the body), t1/2 (the elimination half-life, which is the time required to halve the plasma drug concentration of the terminal phase), and AUC0−t (the area under the plasma drug concentration-time curve, which represents the total absorption after a single dose and reflects the drug absorption degree) of daidzein in DLCL group, increased by 1.6-, 1.8- and 2.5-fold as compared with those in the free group daidzein. Our results indicated that DLCL could not only reduce the first-pass effect of daidzein to promote its oral absorption, but also prolong its mean resident time to achieve the slow-release effect.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xavier Montané ◽  
Karolina Matulewicz ◽  
Karolina Balik ◽  
Paulina Modrakowska ◽  
Marcin Łuczak ◽  
...  

Abstract Different nanomedicine devices that were developed during the recent years can be suitable candidates for their application in the treatment of various deadly diseases such as cancer. From all the explored devices, the nanoencapsulation of several anticancer medicines is a very promising approach to overcome some drawbacks of traditional medicines: administered dose of the drugs, drug toxicity, low solubility of drugs, uncontrolled drug delivery, resistance offered by the physiological barriers in the body to drugs, among others. In this chapter, the most important and recent progress in the encapsulation of anticancer medicines is examined: methods of preparation of distinct nanoparticles (inorganic nanoparticles, dendrimers, biopolymeric nanoparticles, polymeric micelles, liposomes, polymersomes, carbon nanotubes, quantum dots, and hybrid nanoparticles), drug loading and drug release mechanisms. Furthermore, the possible applications in cancer prevention, diagnosis, and cancer therapy of some of these nanoparticles have been highlighted.


Author(s):  
Anahita Rezaeiroshan ◽  
Majid Saeedi ◽  
Katayoun Morteza-Semnani ◽  
Jafar Akbari ◽  
Akbar Hedayatizadeh-Omran ◽  
...  

Abstract Purposes Reactive oxygen species production is harmful to human’s health. The presence of antioxidants in the body may help to diminish reactive oxygen species. Trans-ferulic acid is a good antioxidant, but its low water solubility excludes its utilization. The study aims to explore whether a vesicular drug delivery could be a way to overcome the poor absorption of trans-ferulic acid hence improving its antimicrobial efficiency and antioxidant effect. Methods Niosomal vesicles containing the drug were prepared by film hydration method. The obtained vesicles were investigated in terms of morphology, size, entrapment efficiency, release behavior, cellular cytotoxicity, antioxidant, cellular protection study, and antimicrobial evaluations. Results The optimized niosomal formulation had a particle size of 158.7 nm and entrapment efficiency of 21.64%. The results showed that the optimized formulation containing 25 μM of trans-ferulic acid could enhance the viability of human foreskin fibroblast HFF cell line against reactive oxygen species production. The minimum effective dose of the plain drug and the niosomal formulation against Staphylococcus aurous (ATCC 29213) was 750 µg/mL and 375 µg/mL, respectively, and for Escherichia coli (ATCC 25922), it was 750 µg/mL and 187/5 µg/mL, respectively. The formulation could also improve the minimum bactericidal concentration of the drug in Staphylococcus aurous, Escherichia coli, and Acinobacter baumannii (ATCC 19606). Conclusion These results revealed an improvement in both antibacterial and antioxidant effects of the drug in the niosomal formulation.


Sign in / Sign up

Export Citation Format

Share Document