scholarly journals Interpolymer Complexes of Eudragit® Copolymers as Novel Carriers for Colon-Specific Drug Delivery

Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1459
Author(s):  
Aleksandra V. Bukhovets ◽  
Nikoletta Fotaki ◽  
Vitaliy V. Khutoryanskiy ◽  
Rouslan I. Moustafine

Interpolymer complexes (IPC) based on Eudragit® EPO and Eudragit® S100 were investigated as potential carriers for oral controlled drug delivery to the colon. IPC samples were prepared by mixing copolymer solutions in organic solvents (ethanol, isopropanol:acetone mixture (60:40, % v/v) and tetrahydrofuran). According to the data of elemental analysis, FTIR-spectroscopy, X-ray photoelectron spectroscopy and thermal analysis these IPCs have excess of anionic copolymer (Eudragit® S100) in their structure; they are stabilized by hydrogen and ionic intermacromolecular bonds and do not include free copolymer domains. IPC have pH-independent swelling properties in the media mimicking gastrointestinal tract (GIT) conditions and provide colon-specific delivery of indomethacin in buffer solutions (pH 1.2; 5.8; 6.8; 7.4) and in biorelevant media (fasted state simulated gastric fluid, fasted state simulated intestinal fluid—version 2 and fasted stated simulated colonic fluid).

2020 ◽  
Vol 15 ◽  
Author(s):  
Ravinder Verma ◽  
Deepak Kaushik

: Self-emulsifying drug delivery systems (SEDDS) includes self-micro emulsifying drug delivery system (SMEDDS) and self-nano emulsifying drug delivery system (SNEDDS) whose major benefits is reduction of inter/intra subject variability and food effect which may alter the pharmacological response of the drug. Oral intake of these formulations triggers the digestion process because of pancreatic lipase which emulsify/digest the lipidic ingredients of the formulation resulting into precipitation of the drug. As a tool to foresee in vivo medicament precipitation, in vitro lipolysis models are established. Biorelevant media play an important role to study the effect of in vitro lipolysis and food impact on the bioavailability of SEDDS formulations. It is vital to generate composition of fluids for both fed and fasting conditions of gastric, small intestine and colon to investigate the impact of in vitro lipolysis and food effect on the release behavior of drug from SEDDS. Fed/Fasted state simulated gastric fluid (Fe/FaSSGF), Fed/Fasted state simulated gastric fluid (Fe/FaSSIF) (Phosphate buffers) are first generation while Fa/FeSSIF-V2 (maleate) are second generation biorelevant media utilized for these studies. FaSSIF-V3 belongs to third generation which differs from other generations in the composition and source of bile salts. With updates in physiological data, it is vital to incorporate changes in the dissolution media to make it more biorelevant. This review paper mainly laid emphasis on the compositions of biorelevant media of gastric and small intestine for both fed and fasting conditions. In addition to these, applications of biorelevant to investigate effect of in vitro lipolysis and food on SEDDS are discussed with some recent research reports.


Separations ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 18
Author(s):  
Samantha Bowerbank ◽  
Michelle Carlin ◽  
John Dean

A method for the analysis of thyroid hormones by liquid chromatography-mass spectrometry was used for the dissolution testing of single- and dual-component thyroid hormone supplements via a two-stage biorelevant dissolution procedure. The biorelevant media consisted of fasted-state simulated gastric fluid and fasted state simulated intestinal fluid at 37 °C, and was investigated using an internationally recognized protocol. The dissolution profiles showed consistent solubilization for both single- and dual-component batches at pH 6.5 in the fasted-state simulated intestinal fluid.


Foods ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 448 ◽  
Author(s):  
Maeng ◽  
Yoon ◽  
Chun ◽  
Kim ◽  
Jang ◽  
...  

D-allulose, a C-3 epimer of D-fructose, is a rare monosaccharide used as a food ingredient or a sweetener. In the present study, the in vitro metabolic stability of D-allulose was examined in biorelevant media, that is, simulated gastric fluid (SGF) and fasted state simulated intestinal fluid (FaSSIF) containing digestive enzymes, and in cryopreserved human and rat hepatocytes. The hepatocyte metabolic stabilities of D-allulose were also investigated and compared with those of fructose and erythritol (a sugar-alcohol with no calorific value). D-allulose was highly stable in SGF (97.8% remained after 60 min) and in FaSSIF (101.3% remained after 240 min), indicating it is neither pH-labile nor degraded in the gastrointestinal tract. D-allulose also exhibited high levels of stability in human and rat hepatocytes (94.5–96.8% remained after 240 min), whereas fructose was rapidly metabolized (43.1–52.6% remained), which suggested these two epimers are metabolized in completely different ways in the liver. The effects of D-allulose on glucose and fructose levels were negligible in hepatocytes. Erythritol was stable in human and rat hepatocytes (102.1–102.9% remained after 240 min). Intravenous pharmacokinetic studies in rats showed D-allulose was eliminated with a mean half-life of 72.2 min and a systemic clearance of 15.8 mL/min/kg. Taken together, our results indicate that D-allulose is not metabolized in the liver, and thus, unlikely to contribute to hepatic energy production.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 723
Author(s):  
He Xia ◽  
Ang Li ◽  
Jia Man ◽  
Jianyong Li ◽  
Jianfeng Li

In this work, we used a co-flow microfluidic device with an injection and a collection tube to generate droplets with different layers due to phase separation. The phase separation system consisted of poly(ethylene glycol) diacrylate 700 (PEGDA 700), PEGDA 250, and sodium alginate aqueous solution. When the mixture droplets formed in the outer phase, PEGDA 700 in the droplets would transfer into the outer aqueous solution, while PEGDA 250 still stayed in the initial droplet, breaking the miscibility equilibrium of the mixture and triggering the phase separation. As the phase separation proceeded, new cores emerged in the droplets, gradually forming the second and third layers. Emulsion droplets with different layers were polymerized under ultraviolet (UV) irradiation at different stages of phase separation to obtain microspheres. Microspheres with different layers showed various release behaviors in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). The release rate decreased with the increase in the number of layers, which showed a potential application in sustained drug release.


2012 ◽  
Vol 560-561 ◽  
pp. 434-437 ◽  
Author(s):  
Lan Wang ◽  
Wen Ji Guo ◽  
Yan Zhao Zhao

The objective of this paper was to prepare the composite of crefradine/montmorillionite in the method of solution intercalation. The drug load and intercalation rate varied with the drug concentration. X-ray diffraction (XRD), Fourier transformed infrared (FT-IR) Spectroscopy, and thermal analysis (TG-DSC) were applied to characterize composite mentioned above. Together with drug release tests, results indicate cefradine intercalated into montmorillionite.The release profiles of cefradine/MMT in simulated gastric fluid (pH 1.2) and simulated intestinal fluid (pH 7.4) at 37°Cduring 10h are shown in Fig. 4. The amount of cefradine in the beginning 2h came up to 35% and 50%, and in the following time, cefradine released slowly. The release behaviors met the requirements of sustained release.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 271 ◽  
Author(s):  
Hyeongmin Kim ◽  
Chung-Lyol Lee ◽  
Seohyun Lee ◽  
Tae Jin Lee ◽  
Iqra Haleem ◽  
...  

In this study, we aimed to design a highly swellable and mechanically robust matrix tablet (SMT) as a gastroretentive drug-delivery system (GRDDS) capable of improving the dissolution behavior of β-lapachone with low aqueous solubility. For the preparation of SMTs, the cogrinding technique and freeze–thaw method were used to disperse β-lapachone in SMTs in an amorphous state and to enhance the swelling and mechanical properties of SMTs, respectively. As a result, the crystallinity of coground β-lapachone incorporated in the SMTs was found to be considerably decreased; thereby, the dissolution rates of the drug in a simulated gastric fluid could be substantially increased. The SMTs of β-lapachone also demonstrated significantly enhanced swelling and mechanical properties compared to those of a marketed product. The reason for this might be because the physically crosslinked polymeric networks with a porous structure that were formed in SMTs through the freeze–thaw method. In addition, β-lapachone was gradually released from the SMTs in 6 h. Therefore, SMTs of β-lapachone developed in this study could be used as GRDDS with appropriate swelling and mechanical properties for improving the dissolution behavior of hydrophobic drugs such as β-lapachone.


Author(s):  
Putra Imwa ◽  
Kusumawati Igaw

Objective: As an antidiabetic drug, metformin hydrochloride (HCl) has been well known to possess low oral bioavailability and short half-life. In this study, we prepared the drug delivery system (DDS) of metformin HCl and clinoptilolite as its carrier. The in vitro drug release profile was further investigated.Methods: DDS was made by encapsulating metformin HCl on clinoptilolite using the wet impregnation method at various pH and initial concentration of metformin HCl. Fourier transform infrared spectrometer (FTIR), X-ray diffractometer (XRD), and N2 Sorption Analyzer were used to characterize the as-synthesized DDS. Drug release study was conducted by stirring the DDS in simulated gastric fluid and simulated intestinal fluid over 12 h.Results: The encapsulation process was achieved optimally at pH 7.0 and initial concentration of metformin HCl of 300 mg/l (CLI2-300 denoted DDS). The results of FTIR and N2 sorption analyzer confirmed the existence of metformin HCl on clinoptilolites. Meanwhile, the XRD result showed that the crystallinity of clinoptilolites remained unchanged after the encapsulation process. The cumulative drug release in the simulated gastric fluid was found to be higher than that in the simulated intestinal fluid, which indicated the potent influence of pH on the release properties of the drugs. The drug release kinetics of metformin HCl from clinoptilolite was best fitted into the Korsmeyer-Peppas model with non-Fickian transport mechanism.Conclusion: We found that clinoptilolite was suitable for DDS application, particularly as a carrier of metformin HCl.


2017 ◽  
Vol 5 (2) ◽  
Author(s):  
Nur Syahirah Sallehudin ◽  
Khalilah Abdul Khalil ◽  
Maslinda Musa ◽  
Hifa Nazirah Mohd Yazid ◽  
Anida Yusof

Probiotic encapsulation approach has the potential to protect microorganisms and to deliver them into the gut. Because of the promising preclinical and clinical results, probiotics have been incorporated into a range of products. However, there are still many challenges to overcome with respect to the encapsulation process and the conditions prevailing in the gut. Thus in this study, the release activity of encapsulated L. plantarum NBRC 3070 and Aloe vera gel within alginate coated chitosan matrices during simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) exposure were investigated. There were four groups of beads prepared in this study: 1) Encapsulated probiotic and Aloe vera within alginate beads (chitosan coated), 2) Encapsulated probiotic within alginate beads (chitosan coated), 3) Encapsulated probiotic and Aloe vera within alginate beads (uncoated) and 4) Encapsulated probiotic alone within alginate beads (uncoated). Encapsulation process was carried out using extrusion method. The optimized composition of alginate matrix (1.34% w/v) and Aloe vera gel (1.99% w/v) were used.  In order to investigate their release activity, all beads were exposed in Simulated Gastric (SGF) at pH 2.5 and Simulated Intestinal Fluids (SIF) at pH 6.5 for 120 min and 270 min, respectively. Based on the findings, alginate-Aloe vera beads with chitosan coated was able to protect L. plantarum NBRC 3070 during SGF exposure with only 1 log10 cfu/mL reduction. The presence of Aloe vera gel in the beads improved the survivability of the cells. Encapsulated cells were observed successfully slow released of cells from the beads after exposure in SIF. Scan Electron Microscope (SEM) result had shown that cross link activity of the optimum alginate-Aloe vera with chitosan coating resulted in better survival of cells after simulated gastro and able to deliver sufficient probiotic dose to intestinal region. The combinations were able to improve encapsulated cells survivability during low acidic environment passage and release activity into the intestinal target region.   


Author(s):  
Truong Duc Thang ◽  
Le Thi Hanh Quyen ◽  
Hoang Thi Thuy Hang ◽  
Nguyen Thien Luan ◽  
Dang Thi KimThuy ◽  
...  

Bread is a popular food in the world because of its variety and convenience. Currently, studies on the adding probiotics to bread are limited due to the adverse effects of processing, such as baking temperature, aerobic environment to the probiotic bacteria. The objective of this study was to produce probiotic cream bread, in which Lactobacillus acidophilus was microencapsulated with Alginate 2% (A); Alginate 2% + maltodextrin 1% (AM); Alginate 2% + xanthan gum 0.1% (AX); and Alginate 2% + maltodextrin 1% + xanthan gum 0.1% (AMX). Microcapsules were added to the kernel, conducting encapsulation yield investigations, survival in baking, preservation of bread, and in simulated gastric fluid and simulated intestinal fluid conditions after 8 days of storage. The results showed that the addition of xanthan gum enhanced the encapsulation yield, it reached 92.9% and 92.37% in AMX and AX samples, respectively. The viability of L. acidophilus during baking was decreased by 3.64 and 3.75 Log (CFU/bread) in AMX and AM samples, compared to A and AX which were decreased by 4.75 and 4.44 Log (CFU/ bread). In SGF (Simulated Gastric Fluid) and SIF (Simulated Intestinal Fluid) conditions, the AMX microcapsules provide the best probiotic protection among the four tested carriers. The combination of xanthan gum and maltodextrin in alginate matrix, eventually leading to having dual efficiency: First, xanthan gum would act as buffers that reduce acid activity; Second, maltodextrin acting as a protective agent of L. acidophilus against high temperature as well as potential prebiotic that improve the viability of probiotic.


2017 ◽  
Vol 9 (4) ◽  
pp. 54 ◽  
Author(s):  
Jose Raul Medina ◽  
Jonathan Hernandez ◽  
Marcela Hurtado

Objective: To characterize the in vitro release of carbamazepine tablets and benzoyl metronidazole suspensions using the flow-through cell apparatus and simulated gastrointestinal fluids.Methods: Tegretol® tablets, Flagyl® suspension, and generic formulations of each were tested. Release studies were performed using an automated flow-through cell apparatus. Simulated gastric fluid (with and without pepsin) and simulated intestinal fluid (without pancreatin) at 16 ml/min and fasted state simulated intestinal fluid at 8 ml/min, all at 37.0±0.5 °C, were used as dissolution media. The quantity of dissolved carbamazepine and benzoyl metronidazole was determined at 5-min intervals until 60 min at 285 and 278 nm, respectively. Percentage dissolved at 60 min, mean dissolution time, dissolution efficiency values, and t10%, t25%, t50% and t63.2% were calculated. Mean values for all parameters were compared between the reference and generic formulations using Studentʼs t-test. Dissolution data were fitted to different kinetic models.Results: Simulated gastric fluid without pepsin showed no discriminative capability for carbamazepine tablets. Significant differences were observed between the reference and generic formulations for almost all parameters (*P<0.05). In some cases, the logistic model best described the in vitro release of both drugs.Conclusion: Using an apparatus and media that best simulates the gastrointestinal environment, we identified differences in the rate and extent of dissolution of both drugs that could help to optimise the design of interchangeable formulations. Based on the physicochemical characteristics of carbamazepine and benzoyl metronidazole and the conditions in which the formulations were tested, these differences could be of clinical relevance. 


Sign in / Sign up

Export Citation Format

Share Document