scholarly journals UV-Blocking, Transparent, and Antioxidant Polycyanoacrylate Films

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2011
Author(s):  
Ana Isabel Quilez-Molina ◽  
Lara Marini ◽  
Athanassia Athanassiou ◽  
Ilker S. Bayer

Applications of cyanoacrylate monomers are generally limited to adhesives/glues (instant or superglues) and forensic sciences. They tend to polymerize rapidly into rigid structures when exposed to trace amounts of moisture. Transforming cyanoacrylate monomers into transparent polymeric films or coatings can open up several new applications, as they are biocompatible, biodegradable and have surgical uses. Like other acrylics, cyanoacrylate polymers are glassy and rigid. To circumvent this, we prepared transparent cyanoacrylate films by solvent casting from a readily biodegrade solvent, cyclopentanone. To improve the ductility of the films, poly(propylene carbonate) (PPC) biopolymer was used as an additive (maximum 5 wt.%) while maintaining transparency. Additionally, ductile films were functionalized with caffeic acid (maximum 2 wt.%), with no loss of transparency while establishing highly effective double functionality, i.e., antioxidant effect and effective UV-absorbing capability. Less than 25 mg antioxidant caffeic acid release per gram film was achieved within a 24-h period, conforming to food safety regulations. Within 2 h, films achieved 100% radical inhibition levels. Films displayed zero UVC (100–280 nm) and UVB (280–315 nm), and ~15% UVA (315–400 nm) radiation transmittance comparable to advanced sunscreen materials containing ZnO nanoparticles or quantum dots. Transparent films also exhibited promising water vapor and oxygen barrier properties, outperforming low-density polyethylene (LPDE) films. Several potential applications can be envisioned such as films for fatty food preservation, biofilms for sun screening, and biomedical films for free-radical inhibition.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seyed Mohammad Davachi ◽  
Neethu Pottackal ◽  
Hooman Torabi ◽  
Alireza Abbaspourrad

AbstractThere is growing interest among the public and scientific community toward the use of probiotics to potentially restore the composition of the gut microbiome. With the aim of preparing eco-friendly probiotic edible films, we explored the addition of probiotics to the seed mucilage films of quince, flax, and basil. These mucilages are natural and compatible blends of different polysaccharides that have demonstrated medical benefits. All three seed mucilage films exhibited high moisture retention regardless of the presence of probiotics, which is needed to help preserve the moisture/freshness of food. Films from flax and quince mucilage were found to be more thermally stable and mechanically robust with higher elastic moduli and elongation at break than basil mucilage films. These films effectively protected fruits against UV light, maintaining the probiotics viability and inactivation rate during storage. Coated fruits and vegetables retained their freshness longer than uncoated produce, while quince-based probiotic films showed the best mechanical, physical, morphological and bacterial viability. This is the first report of the development, characterization and production of 100% natural mucilage-based probiotic edible coatings with enhanced barrier properties for food preservation applications containing probiotics.


2019 ◽  
Vol 9 (16) ◽  
pp. 3436 ◽  
Author(s):  
Marc Borrega ◽  
Hannes Orelma

The effects of xylan extraction from birch kraft pulp on the manufacture and properties of cellulose nanofibril (CNF) films were here investigated. Hot water extractions of bleached and unbleached kraft pulps were performed in a flow-through system to remove and recover the xylan. After the extraction, the pulps were oxidized with 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) and fibrillated in a high-pressure microfluidizer. Compared to CNF from bleached kraft pulp, the CNF dispersions obtained from water-extracted pulps were less viscous and generally contained a higher amount of microfiber fragments, although smaller in size. In all cases, however, smooth and highly transparent films were produced from the CNF dispersions after the addition of sorbitol as plasticizer. The CNF films made from water-extracted pulps showed a lower tensile strength and ductility, probably due to their lower xylan content, but the stiffness was only reduced by the presence of lignin. Interestingly, the CNF films from water-extracted bleached pulps were less hydrophilic, and their water vapour permeability was reduced up to 25%. Therefore, hot water extraction of bleached birch kraft pulp could be used to produce CNF films with improved barrier properties for food packaging, while obtaining a high-purity xylan stream for other high-value applications.


2021 ◽  
pp. 1-4
Author(s):  
Solomon L Joseph ◽  
◽  
Agumba O John ◽  
Fanuel M Keheze ◽  
◽  
...  

Carbon nanomaterials have recently attracted wide scientific applications due to their tunable properties. These novel materials act as best fillers that can provide substantial benefits due to their high strength, thermal conductivity, and electrical conductivities. With their huge applications as bulk materials, when implemented in polymer matrix as fillers, they give rise to new promising materials with which their properties can be tuned to suit a particular application. Besides the development of these new nanocomposite materials, there exist some challenges which must be fully surpassed to explore the potentiality of application of carbon-based nanocomposites. Reduced graphene oxide is one of the carbon derivatives which has attracted the current advancement in technology, and recently, it found its new applications in super capacitors used in electronic industries. The limiting factor for its exploration is the affordability. New and affordable sources of these graphene-based nanomaterial have to be devised, for fully realization of their potential applications. In this study, reduced graphene oxide and the bio-polymer chitosan were extracted from the locally available bio waste materials. Nanocomposites were prepared at 50% rGO: chitosan ratio. The films were then prepared by spin coating method. Prepared films were subjected to morphological analysis. From the results, it was observed that rGO induced chitosan crystallization, which led to formation of dendritic structures. Cellulose nanocrystals have thus displayed temperature dependent positive uniaxial birefringence


Cellulose ◽  
2020 ◽  
Vol 27 (16) ◽  
pp. 9423-9436 ◽  
Author(s):  
Sakil Mahmud ◽  
Jinggang Wang ◽  
Na Shao ◽  
Zhu Xiong ◽  
Ruoyu Zhang ◽  
...  

CrystEngComm ◽  
2020 ◽  
Vol 22 (45) ◽  
pp. 7847-7857
Author(s):  
Zhihan Wang ◽  
Quinton Flores ◽  
Hongye Guo ◽  
Raquel Trevizo ◽  
Xiaochan Zhang ◽  
...  

Caffeic acid derivatives with absolute stereostructure were constructed using crystal engineering strategies and topochemical cycloaddition reaction.


2011 ◽  
Vol 162 (10) ◽  
pp. 1052-1059 ◽  
Author(s):  
Patrícia Carlin Fagundes ◽  
Hilana Ceotto ◽  
Amina Potter ◽  
Maria Aparecida Vasconcelos de Paiva Brito ◽  
Dag Brede ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
En Huang ◽  
Liwen Zhang ◽  
Yoon-Kyung Chung ◽  
Zuoxing Zheng ◽  
Ahmed E. Yousef

Use of bacteriocins in food preservation has received great attention in recent years. The goal of this study is to characterize enterocin RM6 fromEnterococcus faecalisOSY-RM6 and investigate its efficacy againstListeria monocytogenesin cottage cheese. Enterocin RM6 was purified fromE. faecalisculture supernatant using ion exchange column, multiple C18-silica cartridges, followed by reverse-phase high-performance liquid chromatography. The molecular weight of enterocin RM6 is 7145.0823 as determined by mass spectrometry (MS). Tandem mass spectrometry (MS/MS) analysis revealed that enterocin RM6 is a 70-residue cyclic peptide with a head-to-tail linkage between methionine and tryptophan residues. The peptide sequence of enterocin RM6 was further confirmed by sequencing the structural gene of the peptide. Enterocin RM6 is active against Gram-positive bacteria, includingL. monocytogenes,Bacillus cereus,and methicillin-resistantStaphylococcus aureus(MRSA). Enterocin RM6 (final concentration in cottage cheese, 80 AU/mL) caused a 4-log reduction in population ofL. monocytogenesinoculated in cottage cheese within 30 min of treatment. Therefore, enterocin RM6 has potential applications as a potent antimicrobial peptide against foodborne pathogens in food.


2021 ◽  
Author(s):  
Elizabeth Quintana Rodríguez ◽  
Domancar Orona Tamayo ◽  
José Nicacio González Cervantes ◽  
Flora Itzel Beltrán Ramirez ◽  
María Alejandra Rivera Trasgallo ◽  
...  

In recent years, alternatives have been sought for the reuse of lignocellulosic waste generated by agricultural and other industries because it is biodegradable and renewable. Lignocellulosic waste can be used for a wide variety of applications, depending on their composition and physical properties. In this chapter, we focus on the different treatments that are used for the extraction of natural cellulose fibers (chemical, physical, biological methods) for more sophisticated applications such as reinforcement in biocomposites. Due to the different morphologies that the cellulose can present, depending from sources, it is possible to obtain cellulose nanocrystals (CNCs), micro- nanofibrillated cellulose (MFC/NFC), and bacterial nanocellulose (BNC) with different applications in the industry. Among the different cellulose nanomaterials highlighted characteristics, we can find improved barrier properties for sound and moisture, the fact that they are environmentally friendly, increased tensile strength and decreased weight. These materials have the ability to replace metallic components, petroleum products, and nonrenewable materials. Potential applications of cellulose nanomaterials are present in the automotive, construction, aerospace industries, etc. Also, this chapter exhibits global market predictions of these new materials or products. In summary, lignocellulosic residues are a rich source of cellulose that can be extracted to obtain products with high value-added and eco-friendly characteristics.


Sign in / Sign up

Export Citation Format

Share Document