scholarly journals Effect of Extrusion Screw Speed and Plasticizer Proportions on the Rheological, Thermal, Mechanical, Morphological and Superficial Properties of PLA

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2111
Author(s):  
Jaime Gálvez ◽  
Juan Correa Aguirre ◽  
Miguel Hidalgo Salazar ◽  
Bairo Vera Mondragón ◽  
Elizabeth Wagner ◽  
...  

One of the critical processing parameters—the speed of the extrusion process for plasticized poly (lactic acid) (PLA)—was investigated in the presence of acetyl tributyl citrate (ATBC) as plasticizer. The mixtures were obtained by varying the content of plasticizer (ATBC, 10–30% by weight), using a twin screw extruder as a processing medium for which a temperature profile with peak was established that ended at 160 °C, two mixing zones and different screw rotation speeds (60 and 150 rpm). To evaluate the thermo-mechanical properties of the blend and hydrophilicity, the miscibility of the plasticizing and PLA matrix, Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), oscillatory rheological analysis, Dynamic Mechanical Analysis (DMA), mechanical analysis, as well as the contact angle were tested. The results derived from the oscillatory rheological analysis had a viscous behavior in the PLA samples with the presence of ATBC; the lower process speed promotes the transitions from viscous to elastic as well as higher values of loss modulus, storage modulus and complex viscosity, which means less loss of molecular weight and lower residual energy in the transition from the viscous state to the elastic state. The mechanical and thermal performance was optimized considering a greater capacity in the energy absorption and integration of the components.

Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4433 ◽  
Author(s):  
Carolina Caicedo ◽  
Rocío Yaneli Aguirre Loredo ◽  
Abril Fonseca García ◽  
Omar Hernán Ossa ◽  
Aldo Vázquez Arce ◽  
...  

The modification of achira starch a thermoplastic biopolymer is shown. Glycerol and sorbitol, common plasticizers, were used in the molten state with organic acids such as oleic acid and lactic acid obtaining thermodynamically more stable products. The proportion of starch:plasticizer was 70:30, and the acid agent was added in portions from 3%, 6%, and 9% by weight. These mixtures were obtained in a torque rheometer for 10 min at 130 °C. The lactic acid managed to efficiently promote the gelatinization process by increasing the available polar sites towards the surface of the material; as a result, there were lower values in the contact angle, these results were corroborated with the analysis performed by differential scanning calorimetry and X-ray diffraction. The results derived from oscillatory rheological analysis had a viscous behavior in the thermoplastic starch samples and with the presence of acids; this behavior favors the transitions from viscous to elastic. The mixture of sorbitol or glycerol with lactic acid promoted lower values of the loss module, the storage module, and the complex viscosity, which means lower residual energy in the transition of the viscous state to the elastic state; this allows the compounds to be scaled to conventional polymer transformation processes.


2018 ◽  
Vol 31 (7) ◽  
pp. 820-830 ◽  
Author(s):  
Haifeng Wang ◽  
Zhenjiang Zhang ◽  
Puguang Ji ◽  
Xiaoyan Yu ◽  
Kimiyoshi Naito ◽  
...  

A novel vinylpyridine-based phthalonitrile monomer, 2,6-bis[3-(3,4-dicyanophenoxy)styryl]pyridine (BDSP), was resoundingly produced by a nucleophilic substitution reaction of 2,6-bis(3-hydroxystyryl)pyridine with 4-nitrophthalonitrile in the presence of potassium carbonate. The chemical structure of the synthesized BDSP was confirmed by proton (1H) and carbon (12C) nuclear magnetic resonance (NMR) as well as Fourier transform infrared (FTIR) analysis. The curing behavior of BDSP was investigated by FTIR and differential scanning calorimetry (DSC) analyses. The resin showed a low complex viscosity in the wide processing window between the monomer melting temperature and the curing temperature of the polymer, as discovered by rheological analysis. In addition, the properties of the polymer were studied by thermal gravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Based on the test results, the BDSP polymer demonstrated superior processing performance, excellent thermal stability, outstanding mechanical properties, and low water uptake, and these advanced performance characteristics are critical to many fields.


2016 ◽  
Vol 36 (4) ◽  
pp. 371-380 ◽  
Author(s):  
Mounira Maiza ◽  
Mohamed Tahar Benaniba ◽  
Valérie Massardier-Nageotte

Abstract Triethyl citrate (TEC) and acetyl tributyl citrate (ATBC) were used as plasticizer for poly(lactic acid) (PLA). The treated and plasticized PLA at various concentrations were analyzed by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and opacity. DSC was used to evaluate the crystallinity and thermal property of all the samples. It was found that the glass transition temperature (Tg) and the melting temperature (Tm) decreased as the amount of citrate esters increased. Additionally, the presence of TEC or ATBC tended to increase the crystallinity of PLA. This result was supported by XRD. DMA of plasticized PLA indicates that a decrease in Tg is obtained with increasing plasticizer content. FTIR spectra indicate that there are some molecular interactions by intermolecular hydrogen bonds between PLA and citrate esters. The effect of the concentration of plasticizer on the opacity of the films was negligible.


2019 ◽  
Vol 39 (2) ◽  
pp. 117-123 ◽  
Author(s):  
Yubi Ji ◽  
Heng Luo ◽  
Min Shi ◽  
Zhao Yang ◽  
Wei Gong ◽  
...  

AbstractPoly(vinyl chloride) (PVC) plastisols are widely used in the production of flexible PVC foams. In this study, we investigated the evolution of the complex viscosity of PVC plastisol by dynamic oscillatory tests, the storage modulus of the PVC compound by dynamic mechanical analysis, and the thermal behavior including the decomposition of three chemical blowing agents (CBAs), namely, azodicarbonamide, 4,4′-oxybis(benzenesulfonyl hydrazide), and sodium bicarbonate, by differential scanning calorimetry. Furthermore, the morphology and quality of the foams obtained from the corresponding plastisols were characterized by scanning electron microscopy. The results indicated that the onset decomposition temperature T2(5%) of a CBA in plastisol is the most critical indicator of the foam quality. The temperature difference corresponding to [T2(5%) – Tηmax] was also proved to be another important parameter. When T2(5%) is within the optimum temperature range of a PVC plastisol, the bigger the [T2(5%) – Tηmax] difference, the better the quality of the foams.


2019 ◽  
Vol 39 (6) ◽  
pp. 508-514
Author(s):  
Yannan He ◽  
Zhiqiang Yu

Abstract The thermal and dynamic mechanical properties of epoxy composites filled with zirconium diboride/nano-alumina (ZrB2/Al2O3) multiphase particles were investigated by means of differential scanning calorimetry, dynamic thermo-mechanical analysis, and numerical simulation. ZrB2/Al2O3 particles were surface organic functional modified by γ-glycidoxypropyltrimethoxysilane for the improvement of their dispersity in epoxy matrix. The results indicated that the curing exotherm of epoxy resin decreased significantly due to the addition of ZrB2/Al2O3 multiphase particles. In comparison to the composites filled with unmodified particles, the modified multiphase particles made the corresponding filling composites exhibit lower curing reaction heat, lower loss modulus, and higher storage modulus. Generally speaking, the composites filled with 5 wt% modified multiphase particles presented the best thermal stability and thermo-mechanical properties due to the better filler-matrix interfacial compatibility and the uniform dispersity of modified particles. Finite element analysis also suggested that the introduction of modified ZrB2/Al2O3 multiphase particles increased the stiffness of the corresponding composites.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1295
Author(s):  
Laura O’Donoghue ◽  
Md. Haque ◽  
Sean Hogan ◽  
Fathima Laffir ◽  
James O’Mahony ◽  
...  

The α-relaxation temperatures (Tα), derived from the storage and loss moduli using dynamic mechanical analysis (DMA), were compared to methods for stickiness and glass transition determination for a selection of model whey protein concentrate (WPC) powders with varying protein contents. Glass transition temperatures (Tg) were determined using differential scanning calorimetry (DSC), and stickiness behavior was characterized using a fluidization technique. For the lower protein powders (WPC 20 and 35), the mechanical Tα determined from the storage modulus of the DMA (Tα onset) were in good agreement with the fluidization results, whereas for higher protein powders (WPC 50 and 65), the fluidization results compared better to the loss modulus results of the DMA (Tα peak). This study demonstrates that DMA has the potential to be a useful technique to complement stickiness characterization of dairy powders by providing an increased understanding of the mechanisms of stickiness.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1283 ◽  
Author(s):  
Miao Miao ◽  
Chunyan Wei ◽  
Ying Wang ◽  
Yongfang Qian

To improve the interfacial bonding and thermal stability of graphene oxide (GO)/polypropylene (PP) composite fibers, a composite fiber with PP as the matrix, GO as reinforcement and maleic anhydride-grafted PP (PP-g-MAH) as a compatibilizer was prepared by a simple and efficient melt-blending method. The GO content was 0.0–5.0 wt %. According to the Fourier Transform Infrared (FT-IR) spectroscopy results, the interfacial bonding in the PP/MAH/GO composite fibers was improved. The Dynamic Mechanical Analysis (DMA) results show that the addition of GO resulted in better interfacial adhesion and higher storage modulus (E′). The loss modulus (E′′) of the PP/MAH/GO-x composite fibers increased with increasing amount of added GO, whereas the loss factor (tan δ) decreased. GO and PP-g-MAH were analyzed by Thermogravimetric Analysis (TGA). The thermal stability of the composite fibers was improved compared to PP. Differential Scanning Calorimetry (DSC) analysis showed that the addition of PP-g-MAH to the composite fiber improved the interfacial bonding of GO in the PP matrix. Thus, compatibility between the two components was obtained. Based on the Scanning Electron Microscopy (SEM) results, the PP fibers exhibited relative orientation due to the strong crystalline morphology. The rough section, PP/GO blend fiber exhibits a very clear phase separation morphology due to the incompatibility between the two and the compatibility of GO and PP in PP/MAH/GO-3 composite fiber is improved, resulting in the interface between the two has improved.


2011 ◽  
Vol 295-297 ◽  
pp. 36-40
Author(s):  
Xiao Xue Liao ◽  
Shuang Quan Liao ◽  
Bing Tang ◽  
Ming Chao Luo ◽  
Yan Fang Zhao ◽  
...  

Natural rubber latex (NRL) modified by holgonated addition with trichlorobromomethane was prepared. The thermal properties of modified NRL were analyzed by thermogravimetric analysis (TG/DTG),differential scanning calorimetry (DSC) and dynamic mechanical analysis(DMA). The results showed that the thermal stability of modified NRL was lower than NRL and the thermal degradation of modified NRL was two-stage decomposition. With increasing of stress frequency, loss modulus and storage modulus of latex increased,while loss modulus and storage modulus of modified latex decreased,compared with NRL.


2021 ◽  
Author(s):  
Daniele Rigotti ◽  
Luca Fambri ◽  
Alessandro Pegoretti

Abstract Composite filaments consisting of poly(lactic acid) (PLA) and micro crystalline cellulose (MCC) were successfully used for additive manufacturing (AM) by fused filament fabrication (FFF). PLA and MCC bio-composites were obtained by direct mixing in a melt compounder; maleic anhydride (MAH) was also grafted onto PLA in reactive mixing stage to evaluate its effect on the final properties of the printed material. Filaments with various concentrations of MCC (up to a maximum content of 10 wt%) were produced with a single screw extruder and used to feed a commercial desktop FFF printer. Upon grafting of PLA with MAH, a more coherent interfacial morphology between PLA and MCC was detected by electron microscopy analysis. The thermal degradation of the PLA was unaffected by the presence of MCC and MAH. According to differential scanning calorimetry and dynamic mechanical analysis results, micro-cellulose acted as nucleating agent for PLA. In fact, the crystallization peak shifted towards lowers temperature and a synergistic effect when MCC was added to PLA grafted with MAH was observed possibly due to the increase of the chain mobility. Micro cellulose led to an increase in the stiffness of the material in both filaments and 3D printed specimen, however, a different fracture behavior was observed due to the peculiar structure of printed samples.


Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1013 ◽  
Author(s):  
Xuan Wang ◽  
Yuan Jia ◽  
Zhen Liu ◽  
Jiaojiao Miao

Poly(lactic acid) (PLA)/lignin-containing cellulose nanofibrils (L-CNFs) composite films with different lignin contents were produced bythe solution casting method. The effect of the lignin content on the mechanical, thermal, and crystallinity properties, and PLA/LCNFs interfacial adhesion wereinvestigated by tensile tests, thermogravimetric analysis, differential scanning calorimetry (DSC), dynamic mechanical analysis, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The tensile strength and modulus of the PLA/9-LCNFs (9 wt % lignin LCNFs) composites are 37% and 61% higher than those of pure PLA, respectively. The glass transition temperature (Tg) decreases from 61.2 for pure PLA to 52.6 °C for the PLA/14-LCNFs (14 wt % lignin LCNFs) composite, and the composites have higher thermal stability below 380 °C than pure PLA. The DSC results indicate that the LCNFs, containing different lignin contents, act as a nucleating agent to increase the degree of crystallinity of PLA. The effect of the LCNFs lignin content on the PLA/LCNFs compatibility/adhesion was confirmed by the FTIR, SEM, and Tg results. Increasing the LCNFs lignin content increases the storage modulus of the PLA/LCNFs composites to a maximum for the PLA/9-LCNFs composite. This study shows that the lignin content has a considerable effect on the strength and flexibility of PLA/LCNFs composites.


Sign in / Sign up

Export Citation Format

Share Document