scholarly journals Starch-Capped Silver Nanoparticles Impregnated into Propylamine-Substituted PVA Films with Improved Antibacterial and Mechanical Properties for Wound-Bandage Applications

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2112 ◽  
Author(s):  
Mudassir Iqbal ◽  
Hadia Zafar ◽  
Azhar Mahmood ◽  
Muhammad Bilal Khan Niazi ◽  
Muhammad Waqar Aslam

This research endeavor aims to develop polyvinyl alcohol (PVA) based films capable of blends with silver nanoparticles (Ag–NPs) for improved antibacterial properties and good mechanical strength to widen its scope in the field of wound dressing and bandages. This study reports synthesis of propylamine-substituted PVA (PA–PVA), Ag–NPs via chemical and green methods (starch capping) and their blended films in various proportions. Employment of starch-capped Ag–NPs as nanofillers into PVA films has substantially improved the above-mentioned properties in the ensuing nanocomposites. Synthesis of PA–PVA, starch-capped Ag–NPs and blended films were well corroborated with UV/Vis spectroscopy, FTIR, NMR, XRD and SEM analysis. Synthesized Ag–NPs were of particle shape and have an average size 20 nm and 40 nm via green and chemical synthesis, respectively. The successful blending of Ag–NPs was yielded up to five weight per weight into PA–PVA film as beyond this self-agglomeration of Ag–NPs was observed. Antibacterial assay has shown good antimicrobial activities by five weight per weight Ag–NPs(G)-encapsulated into PA–PVA blended film, i.e., 13 mm zone inhibition against Escherichia coli and 11 mm zone inhibition against Staphylococcus aureus. Physical strength was measured in the terms of young’s modulus via tensile stress–strain curves of blended films. The five weight per weight Ag–NPs(G)/PA–PVA blend film showed maximum tensile strength 168.2 MPa while three weight per weight Ag–NPs(G)/PVA blend film showed highest values for ultimate strain 297.0%. Ag–NPs embedment into PA–PVA was resulted in strong and ductile film blend than pristine PA–PVA film due to an increase in hydrogen bonding. These good results of five weight per weight Ag–NPs(G)/PA–PVA product make it a potent candidate for wound dressing application in physically active body areas.

Antibiotics ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 68 ◽  
Author(s):  
Mahsa Eshghi ◽  
Hamideh Vaghari ◽  
Yahya Najian ◽  
Mohammad Najian ◽  
Hoda Jafarizadeh-Malmiri ◽  
...  

Silver nanoparticles (Ag NPs) were synthesized using Juglans regia (J. regia) leaf extract, as both reducing and stabilizing agents through microwave irradiation method. The effects of a 1% (w/v) amount of leaf extract (0.1–0.9 mL) and an amount of 1 mM AgNO3 solution (15–25 mL) on the broad emission peak (λmax) and concentration of the synthesized Ag NPs solution were investigated using response surface methodology (RSM). Fourier transform infrared analysis indicated the main functional groups existing in the J. regia leaf extract. Dynamic light scattering, UV-Vis spectroscopy and transmission electron microscopy were used to characterize the synthesized Ag NPs. Fabricated Ag NPs with the mean particle size and polydispersity index and maximum concentration and zeta potential of 168 nm, 0.419, 135.16 ppm and −15.6 mV, respectively, were obtained using 0.1 mL of J. regia leaf extract and 15 mL of AgNO3. The antibacterial activity of the fabricated Ag NPs was assessed against both Gram negative (Escherichia coli) and positive (Staphylococcus aureus) bacteria and was found to possess high bactericidal effects.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2486 ◽  
Author(s):  
Yan Yang ◽  
Zhijie Zhang ◽  
Menghui Wan ◽  
Zhihua Wang ◽  
Xueyan Zou ◽  
...  

Polyvinyl alcohol (PVA) electrospun nanofibers (NFs) are ideal carriers for loading silver nanoparticles (Ag NPs) serving as antibacterial materials. However, it is still a challenge to adjust the particles size, distribution, and loading density via a convenient and facile method in order to obtain tunable structure and antimicrobial activities. In this study, Ag NPs surface decorated PVA composite nanofibers (Ag/PVA CNFs) were fabricated by the solvothermal method in ethylene glycol, which plays the roles of both reductant and solvent. The morphology and structure of the as-fabricated Ag/PVA CNFs were characterized by scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, X-ray diffraction, UV-visible spectroscopy, and Fourier transform infrared spectroscopy. Ag NPs had an average diameter of 30 nm, the narrowest size distribution and the highest loading density were successfully decorated on the surfaces of PVA NFs, at the AgNO3 concentration of 0.066 mol/L. The antibacterial properties were evaluated by the methods of absorption, turbidity, and growth curves. The as-fabricated Ag/PVA hybrid CNFs exhibit excellent antimicrobial activities with antibacterial rates over 98%, especially for the sample prepared with AgNO3 concentration of 0.066 mol/L. Meanwhile, the antibacterial effects are more significant in the Gram-positive bacteria of Staphylococcus aureus (S. aureus) than the Gram-negative bacteria of Escherichia coli (E. coli), since PVA is more susceptive to S. aureus. In summary, the most important contribution of this paper is the discovery that the particles size, distribution, and loading density of Ag NPs on PVA NFs can be easily controlled by adjusting AgNO3 concentrations, which has a significant impact on the antibacterial activities of Ag/PVA CNFs.


2020 ◽  
Vol 12 (24) ◽  
pp. 10523
Author(s):  
Alaa H. Alkhathlan ◽  
Hessah A. AL-Abdulkarim ◽  
Mujeeb Khan ◽  
Merajuddin Khan ◽  
Abdullah AlDobiy ◽  
...  

Applications of chemical synthetic methods for the preparation of metal nanoparticles involve toxic reagents, which are hazardous to both humans and the environment. On the other hand, ecofriendly plant-based techniques offer rapid, non-toxic, and suitable alternatives to the traditional methods. Herein, we report an eco-friendly method for the preparation of silver nanoparticles (Ag NPs) using two different aqueous extracts of Zingiber officinale (ginger) and Nigella sativa L. seeds (black cumin). Successful preparation of Ag NPs was confirmed by X-ray diffraction, ultraviolet–visible (UV-Vis) spectroscopy, and energy dispersive spectroscopy (EDX). Transmission electron microscopy (TEM) analysis revealed that Nigella sativa L. seed extract (NSE) produced a smaller size of NPs (~8 nm), whereas the ginger extract (GE) led to the formation of slightly larger Ag NPs (~12 nm). In addition, to study the effect of concentration of the extract on the quality of resulting NPs, two different samples were prepared from each extract by increasing the concentrations of the extracts while using a fixed amount of precursor (AgNO3). In both cases, a high concentration of extract delivered less agglomerated and smaller-sized Ag NPs. Furthermore, the antibacterial properties of as-prepared Ag NPs were tested against different bacterial strains. Notably, despite the slightly better quality of Ag NPs obtained from NSE (NSE-Ag), NPs prepared by using GE (GE-Ag) demonstrated superior antibacterial properties. In case of the plant-extract-based synthesis of nanoparticles, it is widely reported that during the preparation, the residual phytomolecules remain on the surface of resulting NPs as stabilizing agents. Therefore, in this case, the high antibacterial properties of GE-Ag can be attributed to the contributing or synergetic effect of residual phytomolecules of GE extract on the surface of Ag NPs, since the aqueous extract of GE has been known to possess higher intrinsic bactericidal properties when compared to the aqueous NSE extract.


Biomedicine ◽  
2020 ◽  
Vol 39 (4) ◽  
pp. 544-549
Author(s):  
G. K. Pratap ◽  
Manjula Shantaram

Introduction and Aim: The silver nanoparticles have attained a special place in the area of nanotechnology because of their different biological applications. Fabrication of nanoparticles using green synthesis is  done because of its wide applications in different fields such as biomedical, medicine, agriculture and food engineering. This study is to develop an easy and eco-friendly method for the synthesis of Ag-NPs using leaf extracts of the medicinal plant. Materials and Methods: The medicinal plants are rich sources of various medicinal properties. Olea dioica Roxb., leaf extract was used to investigate the effects of Ag-NPs having antibacterial activity and antioxidant capacity.  The plant leaf extract contains flavonoids, alkaloids, saponins, and phenolic compounds which acts as reducing and stabilizing agents. The green synthesized silver nanoparticles were characterized by various techniques like UV- visible spectrophotometer, FTIR spectroscopy, and SEM analysis. Results: The synthesis of sliver nanoparticles from plant source, and analysis of nano particles by UV-Vis spectra, SEM and FTIR. The biological evaluations of Ag-NPs indicated an excellent inhibitory efficacy, antioxidant and antimicrobial activity for their future applications in medicine. Conclusion: The synthesized silver nanoparticles exhibited potent antioxidant and antimicrobial activities against Gram-positive and Gram-negative bacteria. The silver (Ag-NPs) nanoparticles synthesized by the pot green synthesis method proves its potential use in various medical applications. Keywords: Silver nanoparticles; Medicinal plants; Ag-NPs; Olea dioica Roxb.,


2021 ◽  
Vol 3 (1) ◽  
pp. 76-81
Author(s):  
Siti Husnaa Mohd Taib ◽  
Kamyar Shameli ◽  
Roshafima Rasit Ali ◽  
Zahra Izadiyan ◽  
Zatil Izzah Ahmad Tarmizi

The present paper reports the synthesis of silver nanoparticles (Ag-NPs) by a green method using Hibiscus sabdariffa (H. sabdariffa) leaves extract as reductant and stabilizer. The synthesized Ag-NPs were characterized by ultraviolet-visible (UV-vis) spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR). UV-vis spectrum of synthesized Ag-NPs showed a peak at 378 nm. TEM analysis revealed that the particles were spherical and irregular in shape and has average size around 56.52 nm. This structure and size of particles were confirmed by AFM analysis. The UV-vis and FTIR spectrum provides evidence of the presence of caffeic acid component as a representative biomolecule in stabilising the nanoparticles based on previous studies. Hence, this study advocates that H. sabdariffa have potential for synthesizing nanoparticles.


2021 ◽  
Vol 10 (1) ◽  
pp. 412-420
Author(s):  
Mona S. Alwhibi ◽  
Dina A. Soliman ◽  
Manal A. Awad ◽  
Asma B. Alangery ◽  
Horiah Al Dehaish ◽  
...  

Abstract In recent times, research on the synthesis of noble metal nanoparticles (NPs) has developed rapidly and attracted considerable attention. The use of plant extracts is the preferred mode for the biological synthesis of NPs due to the presence of biologically active constituents. Aloe vera is a plant endowed with therapeutic benefits especially in skincare due to its unique curative properties. The present study focused on an environmental friendly and rapid method of phytosynthesis of silver nanoparticles (Ag-NPs) using A. vera gel extract as a reductant. The synthesized Ag-NPs were characterized by transmission electron microscopy (TEM), UV-Vis spectroscopy, Fourier transform infrared (FTIR), and dynamic light scattering (DLS). TEM micrographs showed spherical-shaped synthesized Ag-NPs with a diameter of 50–100 nm. The UV-Vis spectrum displayed a broad absorption peak of surface plasmon resonance (SPR) at 450 nm. The mean size and size distribution of the formed Ag-NPs were investigated using the DLS technique. Antibacterial studies revealed zones of inhibition by Ag-NPs of A. vera (9 and 7 mm) against Pseudomonas aeruginosa and Escherichia coli, respectively. Furthermore, the antifungal activity was screened, based on the diameter of the growth inhibition zone using the synthesized Ag-NPs for different fungal strains. Anticancer activity of the synthesized Ag-NPs against the mouse melanoma F10B16 cell line revealed 100% inhibition with Ag-NPs at a concentration of 100 µg mL−1. The phytosynthesized Ag-NPs demonstrated a marked antimicrobial activity and also exhibited a potent cytotoxic effect against mouse melanoma F10B16 cells. The key findings of this study indicate that synthesized Ag-NPs exhibit profound therapeutic activity and could be potentially ideal alternatives in medicinal applications.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4041
Author(s):  
Adriana Cecilia Csakvari ◽  
Cristian Moisa ◽  
Dana G. Radu ◽  
Leonard M. Olariu ◽  
Andreea I. Lupitu ◽  
...  

Cannabis sativa L. (hemp) is a plant used in the textile industry and green building material industry, as well as for the phytoremediation of soil, medical treatments, and supplementary food products. The synergistic effect of terpenes, flavonoids, and cannabinoids in hemp extracts may mediate the biogenic synthesis of metal nanoparticles. In this study, the chemical composition of aqueous leaf extracts of three varieties of Romanian hemp (two monoecious, and one dioecious) have been determined by Fourier-Transformed Infrared spectroscopy (FT-IR), high-performance liquid chromatography, and mass spectrometry (UHPLC-DAD-MS). Then, their capability to mediate the green synthesis of silver nanoparticles (AgNPs) and their pottential antibacterial applications were evaluated. The average antioxidant capacity of the extracts had 18.4 ± 3.9% inhibition determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 78.2 ± 4.1% determined by 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS™) assays. The total polyphenolic content of the extracts was 1642 ± 32 mg gallic acid equivalent (GAE) L−1. After this, these extracts were reacted with an aqueous solution of AgNO3 resulting in AgNPs, which were characterized by UV−VIS spectroscopy, FT-IR, scanning electron microscopy (SEM-EDX), and dynamic light scattering (DLS). The results demonstrated obtaining spherical, stable AgNPs with a diameter of less than 69 nm and an absorbance peak at 435 nm. The mixture of extracts and AgNPs showed a superior antioxidant capacity of 2.3 ± 0.4% inhibition determined by the DPPH• assay, 88.5 ± 0.9% inhibition as determined by the ABTS•+ assay, and a good antibacterial activity against several human pathogens: Escherichia coli, Klebsiella pneumoniae, Pseudomonas fluorescens, and Staphylococcus aureus.


2013 ◽  
Vol 14 (1-2) ◽  
pp. 49-60 ◽  
Author(s):  
Francesca Broggi ◽  
Jessica Ponti ◽  
Guido Giudetti ◽  
Fabio Franchini ◽  
Vicki Stone ◽  
...  

AbstractSilver nanoparticles (Ag NPs) are one of the most common nanomaterials present in nanotechnology-based products. Here, the physical chemical properties of Ag NPs suspensions of 44 nm, 84 nm and 100 nm sizes synthesized in our laboratory were characterized. The NM-300 material (average size of 17 nm), supplied by the Joint Research Centre Nanomaterials Repository was also included in the present study. The Ag NPs potential cytotoxicity was tested on the Balb3T3 cell line by the Colony Forming Efficiency assay, while their potential morphological neoplastic transformation and genotoxicity were tested by the Cell Transformation Assay and the micronucleus test, respectively. After 24 h of exposure, NM-300 showed cytotoxicity with an IC50 of 8 µM (corresponding to 0.88 µg/mL) while for the other nanomaterials tested, values of IC50 were higher than 10 µM (1.10 µg/mL). After 72 h of exposure, Ag NPs showed size-dependent cytotoxic effect with IC50 values of 1.5 µM (1.16 µg/mL) for NM-300, 1.7 µM (1.19 µg/mL) for Ag 44 nm, 1.9 µM (0.21 µg/mL) for Ag 84 nm and 3.2 µM (0.35 µg/mL) for Ag 100 nm. None of the Ag NPs tested was able to induce either morphological neoplastic transformation or micronuclei formation.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1777 ◽  
Author(s):  
Md. Mahiuddin ◽  
Prianka Saha ◽  
Bungo Ochiai

A green synthesis of silver nanoparticles (AgNPs) was conducted using the stem extract of Piper chaba, which is a plant abundantly growing in South and Southeast Asia. The synthesis was carried out at different reaction conditions, i.e., reaction temperature, concentrations of the extract and silver nitrate, reaction time, and pH. The synthesized AgNPs were characterized by visual observation, ultraviolet–visible (UV-vis) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), energy dispersive x-ray (EDX), and Fourier transform infrared (FTIR) spectroscopy. The characterization results revealed that AgNPs were uniformly dispersed and exhibited a moderate size distribution. They were mostly spherical crystals with face-centered cubic structures and an average size of 19 nm. The FTIR spectroscopy and DLS analysis indicated that the phytochemicals capping the surface of AgNPs stabilize the dispersion through anionic repulsion. The synthesized AgNPs effectively catalyzed the reduction of 4-nitrophenol (4-NP) and degradation of methylene blue (MB) in the presence of sodium borohydride.


2020 ◽  
Vol 2 (1) ◽  
pp. 24

Silver nanoparticles (Ag-NPs) were prepared by the biological reduction method. Green tea extract was taken as a reducing and stabilizing agent and silver nitrate as the metal precursor for nanoparticle synthesis. The formation of the silver nanoparticles was monitored visually and using UV-Visible absorption spectroscopy. The synthesized silver nanoparticles were characterized by UV-visible spectroscopy, FTIR, Zeta sizer, Zeta potential, and antimicrobial studies. Silver nanoparticles were also subjected to investigate nanocatalytic activity with standard pancreatic alpha-amylase and bacterial amylase enzyme by the DNS assay method. UV-Vis spectroscopy revealed the formation of silver nanoparticles by exhibiting the typical surface plasmon absorption maxima at 430 nm. Four major functional groups of bio-molecules such as phenol, carboxylic acid, protein, and alkyl group were recorded in FTIR spectra. The size of the nanoparticles ranges between 5nm and 150nm. The average size and size distribution of silver nanoparticles is 59.66nm. The zeta potential of the silver nanoparticle is negatively charged and rendered as a sharp peak at -31.7mV. Antimicrobial activity of silver nanoparticles exhibited the highest inhibition against Gram-negative bacteria than Gram-positive bacteria and yeast pathogens. Starch hydrolysis of Ag-NPs was studied with pancreatic alpha-amylase (tailor made), crude and purified bacterial amylase enzyme. The formation of reducing sugar was increased about 40-fold for a purified enzyme, 11-fold for the pancreatic enzyme, and 6-fold for crude bacterial enzyme incorporated with Ag-NPs over control. The present studies recommended that Ag-NPs have a significant role in the degradation of starch into reducing sugars by acting as a nanocatalyst.


Sign in / Sign up

Export Citation Format

Share Document