scholarly journals Double-Crosslinked Polyurethane Acrylate for Highly Conductive and Stable Polymer Electrolyte

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2557
Author(s):  
Han-Na Kim ◽  
Kyung-Geun Kim ◽  
Yeon Uk Jeong ◽  
Sung Yeol Kim

High ionic conductivity and good stability are major factors that influence the use of polymer electrolytes in electrochemical storage and conversion devices. In this study, we present polyurethane acrylate (PUA) membranes having enhanced ionic conductivity and swelling stability by double crosslinking the polyurethane (PU) and polyacrylate (PA) compartments. The crosslinking agent concentration was varied to control their mechanical properties, swelling stability, and ionic conductivity. Under optimum conditions, the electrolyte uptake of the double-crosslinked PUA membranes without notable defects was 245%. The maximum ionic conductivity of these membranes reached 9.6 mS/cm, which was higher than those with respect to most of the previously reported PUA- or PU-based polymer electrolytes.

2015 ◽  
Vol 6 (7) ◽  
pp. 1052-1055 ◽  
Author(s):  
Suting Yan ◽  
Jianda Xie ◽  
Qingshi Wu ◽  
Shiming Zhou ◽  
Anqi Qu ◽  
...  

A solid polymer electrolyte fabricated using ion containing microgels manifests high ionic conductivity for potential use in lithium batteries.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4115 ◽  
Author(s):  
Aimi Mahirah Zulkifli ◽  
Nur Izzah Aqilah Mat Said ◽  
Shujahadeen Bakr Aziz ◽  
Elham Mohammed Ali Dannoun ◽  
Shameer Hisham ◽  
...  

In the present work, phthaloyl chitosan (PhCh)-based gel polymer electrolytes (GPEs) were prepared using dimethylformamide (DMF) as a solvent, ethyl carbonate (EC) as a co-solvent, and a set of five quaternaries of potassium iodide (KI) as a doping salt, which is a mixed composition of iodine (I2). The prepared GPEs were applied to dye-sensitized solar cells (DSSC) to observe the effectiveness of the electrolyte, using mesoporous TiO2, which was sensitized with N3 dye as the sensitizer. The incorporation of the potassium iodide-based redox couple in a polymer electrolyte is fabricated for dye-sensitized solar cells (DSSCs). The number of compositions was based on the chemical equation, which is 1:1 for KI:I2. The electrical performance of prepared GPE systems have been assessed using electrical impedance spectroscopy (EIS), and dielectric permittivity. The improvement in the ionic conductivity of PhCh-based GPE was observed with the rise of salt concentration, and the maximum ionic conductivity (4.94 × 10−2 S cm−1) was achieved for the 0.0012 mol of KI:I2. The study of dielectric permittivity displays that ions with a high dielectric constant are associated with a high concentration of added ions. Furthermore, the gel polymer electrolyte samples were applied to DSSCs to detect the conversion effectiveness of the electrolytes. For electrolytes containing various content of KI:I2 the highest conversion efficiency (η%) of DSSC obtained was 3.57% with a short circuit current density (Jsc) of 20.33 mA cm−2, open-circuit voltage (Voc) of 0.37 V, fill factor (FF) of 0.47, as well as a conductivity of 2.08 × 10−2 S cm−1.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 838 ◽  
Author(s):  
Marwah Rayung ◽  
Min Min Aung ◽  
Shah Christirani Azhar ◽  
Luqman Chuah Abdullah ◽  
Mohd Sukor Su’ait ◽  
...  

With the continuing efforts to explore alternatives to petrochemical-based polymers and the escalating demand to minimize environmental impact, bio-based polymers have gained a massive amount of attention over the last few decades. The potential uses of these bio-based polymers are varied, from household goods to high end and advanced applications. To some extent, they can solve the depletion and sustainability issues of conventional polymers. As such, this article reviews the trends and developments of bio-based polymers for the preparation of polymer electrolytes that are intended for use in electrochemical device applications. A range of bio-based polymers are presented by focusing on the source, the general method of preparation, and the properties of the polymer electrolyte system, specifically with reference to the ionic conductivity. Some major applications of bio-based polymer electrolytes are discussed. This review examines the past studies and future prospects of these materials in the polymer electrolyte field.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1910 ◽  
Author(s):  
Joy Liew ◽  
Kee Loh ◽  
Azizan Ahmad ◽  
Kean Lim ◽  
Wan Wan Daud

The potential for using O-methylene phosphonic κ-carrageenan (OMPk) as a filler in the chitosan-based polymer electrolyte N-methylene phosphonic chitosan (NMPC) was investigated. OMPk, a derivative of κ-carrageenan, was synthesized via phosphorylation and characterized using infrared spectroscopy (IR) and nuclear magnetic resonance (NMR). Both the IR and NMR results confirmed the phosphorylation of the parent carrageenan. The solid polymer electrolyte (SPE)-based NMPC was prepared by solution casting with different weight percentages of OMPk ranging from 2 to 8 wt %. The tensile strength of the polymer membrane increased from 18.02 to 38.95 MPa as the amount of OMPk increased to 6 wt %. However, the increase in the ionic conductivity did not match the increase in the tensile strength. The highest ionic conductivity was achieved with 4 wt % OMPk, which resulted in 1.43 × 10−5 Scm−1. The κ-carrageenan-based OMPk filler strengthened the SPE while maintaining an acceptable level of ionic conductivity.


2021 ◽  
Vol 8 ◽  
Author(s):  
Qiongyu Zhou ◽  
Songli Liu ◽  
Shiju Zhang ◽  
Yong Che ◽  
Li-Hua Gan

Compared with the fagile ceramic solid electrolyte, Li-ion conducting polymer electrolytes are flexible and have better contact with electrodes. However, the ionic conductivity of the polymer electrolytes is usually limited because of the slow segment motion of the polymer. In this work, we introduce porous Co3O4 cuboids to Poly (Ethylene Oxide)-based electrolyte (PEO) to investigate the influence of these cuboids on the ionic conductivity of the composite electrolyte and the performance of the all-solid-state batteries. The experiment results showed the porous cuboid Co3O4 fillers not only break the order motion of segments of the polymer to increase the amorphous phase amount, but also build Li+ continuous migration pathway along the Co3O4 surface by the Lewis acid-base interaction. The Li+ conductivity of the composite polymer electrolyte reaches 1.6 × 10−4 S cm−1 at 30°C. The good compatibility of the composite polymer electrolyte to Li metal anode and LiFePO4 cathode ensures good rate performance and long cycle life when applying in an all-solid-state LiFePO4 battery. This strategy points out the direction for developing the high-conducting composite polymer electrolytes for all-solid-state batteries.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 595 ◽  
Author(s):  
Preston Sutton ◽  
Martino Airoldi ◽  
Luca Porcarelli ◽  
Jorge L. Olmedo-Martínez ◽  
Clément Mugemana ◽  
...  

Lithium metal anodes have been pursued for decades as a way to significantly increase the energy density of lithium-ion batteries. However, safety risks caused by flammable liquid electrolytes and short circuits due to lithium dendrite formation during cell cycling have so far prevented the use of lithium metal in commercial batteries. Solid polymer electrolytes (SPEs) offer a potential solution if their mechanical properties and ionic conductivity can be simultaneously engineered. Here, we introduce a family of SPEs that are scalable and easy to prepare with a photopolymerization process, synthesized from amphiphilic acrylic polymer conetworks based on poly(ethylene glycol), 2-hydroxy-ethylacrylate, norbornyl acrylate, and either lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) or a single-ion polymethacrylate as lithium-ion source. Several conetworks were synthesized and cycled, and their ionic conductivity, mechanical properties, and lithium transference number were characterized. A single-ion-conducting polymer electrolyte shows the best compromise between the different properties and extends the calendar life of the cell.


2020 ◽  
pp. 089270572093075
Author(s):  
Jitender Paul Sharma ◽  
Neelam Guleria

In the present work, nanocomposite polymer electrolyte films were prepared by solution casting technique using nanosized fumed silica to polyethylene oxide (PEO)-based polymer electrolytes containing ammonium bifluoride (NH4HF2). The ionic conductivity of 1.19 × 10−5 S cm−1 has been observed at room temperature (25°C) for 3 wt% fumed silica in PEO-10 wt% NH4HF2 polymer electrolytes after which the conductivity was observed to decrease. Furthermore, the addition of high dielectric constant plasticizer propylene carbonate (PC) in the optimized composition of nanocomposite polymer electrolytes has increased the number of charge carriers by the large dissolution of ionic salt, amorphous content, and hence the ionic conductivity. Maximum ionic conductivity obtained at room temperature was found to be 1.55 × 10−4 S cm−1 in the case of PEO-10 wt% NH4HF2-3 wt% fumed silica-0.3 (ml) PC polymer electrolytes which is five orders of magnitude higher than that of the polymer host material. Temperature-dependent ionic conductivity, activation energy, and dielectric constant studies have been described for all the compositions of polymer electrolytes. Ionic conductivity and dielectric constant studies were determined from impedance data. Polymer electrolytes containing both fumed silica and PC highlight that there is no phase transition in the polymer electrolyte and temperature dependence of ionic conductivity in the temperature range is of almost Arrhenius type. The lowest activation energy value for the highest conducting polymer electrolyte was found to be 0.172 eV. Change in melting temperature, % crystallinity ( χ c), and mechanical properties have also been observed in polymer electrolytes containing fumed silica as well as PC as studied by Differential Scanning Calorimetry/Thermogravimetric Analysis (DSC/TGA) and universal testing machine, respectively.


Sign in / Sign up

Export Citation Format

Share Document