scholarly journals Iron (II) Metallo-Supramolecular Polymers Based on Thieno[3,2-b]thiophene for Electrochromic Applications

Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 362
Author(s):  
Andrei Chernyshev ◽  
Udit Acharya ◽  
Jiří Pfleger ◽  
Olga Trhlíková ◽  
Jiří Zedník ◽  
...  

Four new bis(tpy) unimers with different linkers between the thieno[3,2-b]thiophene-2,5-diyl central unit and terpyridine-4′-yl (tpy) end-groups: no linker (Tt), ethynediyl (TtE), 1,4-phenylene (TtPh) and 2,2′-bithophene-5,5′-diyl (TtB) are prepared, characterized, and assembled with Fe2+ ions to metallo-supramolecular polymers (Fe-MSPs). The Fe-MSP films prepared by spin-casting on Indium Tin Oxide (ITO) glass are characterized by atomic force microscope (AFM) microscopy, cyclic voltammetry, and UV/vis spectroscopy and studied for their electrochromism and effect of the unimer structure on their electrochromic performance. Of the studied MSPs, Fe-Tt shows the highest optical contrast as well as coloration efficiency (CE = 641 cm2 C−1) and the fastest optical response. This makes it an excellent candidate for possible use in electrochromic devices.

2021 ◽  
Author(s):  
Marco Schott ◽  
Lukas Niklaus ◽  
Christine Müller ◽  
Begüm Bozkaya ◽  
Guinevere A Giffin

Electrochromic devices (ECDs) containing iron-based metallo-supramolecular polymers (Fe-MEPE) and Prussian blue (PB) as active electrode materials, a polymer electrolyte and flexible ultra-thin indium tin oxide (ITO) glass as transparent conductive...


Biosensors ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 118
Author(s):  
Rodica Ionescu ◽  
Raphael Selon ◽  
Nicolas Pocholle ◽  
Lan Zhou ◽  
Anna Rumyantseva ◽  
...  

Conductive indium-tin oxide (ITO) and non-conductive glass substrates were successfully modified with embedded gold nanoparticles (AuNPs) formed by controlled thermal annealing at 550 °C for 8 h in a preselected oven. The authors characterized the formation of AuNPs using two microscopic techniques: scanning electron microscopy (SEM) and atomic force microscopy (AFM). The analytical performances of the nanostructured-glasses were compared regarding biosensing of Hsp70, an ATP-driven molecular chaperone. In this work, the human heat-shock protein (Hsp70), was chosen as a model biomarker of body stress disorders for microwave spectroscopic investigations. It was found that microwave screening at 4 GHz allowed for the first time the detection of 12 ng/µL/cm2 of Hsp70.


2013 ◽  
Vol 537 ◽  
pp. 109-113
Author(s):  
Xi Wei Qi ◽  
Xiao Yan Zhang ◽  
Xuan Wang ◽  
Hai Bin Sun ◽  
Jian Quan Qi

A series of Dy doped La and Sc solution of BiFeO3 thin films have been prepared by using spin-coating process on conductive indium tin oxide (ITO)/glass substrates, which a simple sol-gel possess is applied and annealed at 500°C. With the increase of content of Dy, the strongest peak (110) of La and Sc solution BiFeO3 film tends to further broaden. There is no second phase existence within the present Dy doping level. Cross section scanning electron microscope (SEM) pictures revealed that the thickness of BiFeO3 film was about 370 nm. For Dy doping level is 0.05, the maximum double remanent polarization 2Pr of as-prepared BiFeO3 thin film is15.44 μC/cm2. Image of atomic force microscopy indicated that the root-mean-square surface roughness value of as-prepared BiFeO3 thin film is 2.11 nm. The dielectric constant of as-prepared films tends to firstly increase and then decrease with the increase of Dy content


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 561
Author(s):  
Laid Kadri ◽  
Georgiana Bulai ◽  
Aurelian Carlescu ◽  
Stoian George ◽  
Silviu Gurlui ◽  
...  

In this paper, we report on the effect of titanium dioxide (TiO2) target sintering temperature on the morphological and optical properties of amorphous titanium dioxide thin films synthesized by pulsed laser deposition (PLD) on indium tin oxide (ITO) glass substrate and subsequently heat-treated in air at low temperature (150 °C). Three types of targets were used, unsintered (pressed at room temperature), sintered at 500 °C and sintered at 1000 °C. The surface morphology of the samples was investigated by scanning electron microscopy (SEM), and profilometry was used for thickness measurements. The structural properties of the films were examined by X-ray diffraction (XRD), while their optical properties were studied by UV‒vis spectroscopy. The obtained TiO2 thin films have an amorphous nature, as shown by XRD analysis. Profilometer showed that sintered target samples have more reliable thicknesses than unsintered ones. The SEM studies revealed the sufficient structural homogeneity of sintered target nanosized TiO2 films and agglomerates in the case of unsintered target film. The UV‒vis transmittance spectra showed high transparency in the visible range of PLD films, proportional to the target sintering temperature. The optical band gaps of the films deposited using the 500 °C and 1000 °C sintered targets are closer to those of anatase and rutile phases, respectively, which provides a promising approach to the challenges of amorphous TiO2-based nanostructures.


2011 ◽  
Vol 492 ◽  
pp. 202-205 ◽  
Author(s):  
Xi Wei Qi ◽  
Xiao Yan Zhang ◽  
Xuan Wang ◽  
Hai Bin Sun ◽  
Jian Quan Qi

BiFeO3 thin films were spin-coated on conductive indium tin oxide (ITO)/glass substrates by a simple sol-gel possess annealed at 470-590°C. The crystal structure of as-prepared BiFeO3 thin films annealed at different temperature was determined to be rhombohedral of R3m space and free of secondary phases was also confirmed. Cross section scanning electron microscope (SEM) pictures revealed that the thickness of BiFeO3 thin film was about 320 nm. The double remanent polarization 2Pr of BiFeO3 thin film annealed at 500°C is 2.5 μC/cm2 without applied field at room temperature. Image of atomic force microscopy indicated that the root-mean-square surface roughness value of BiFeO3 thin film was 6.13 nm.


2014 ◽  
Vol 894 ◽  
pp. 381-385 ◽  
Author(s):  
Siti Zairyn Fakurol Rodzi ◽  
Yusairie Mohd

Nickel oxide thin films were electrodeposited onto ITO glass substrates by a two-step method: i) electrodeposition of nickel and ii) further thermal oxidation at 300 °C. The surface morphology of the NiO thin films was characterized by atomic force microscopy (AFM) and the transmittance in the coloured and bleached states were analysed using UV-Visible (UV-Vis) spectroscopy. The electrochemical properties of NiO films were measured in 1 M KOH electrolyte by cyclic voltammetry (CV). A good optical quality and highly improved electrochromic performances NiO film was successfully synthesized.


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 906 ◽  
Author(s):  
Bassem Jamoussi ◽  
Radhouane Chakroun ◽  
Abdelmajid Timoumi ◽  
Khaled Essalah

In this study, a series of new metal phthalocyanines with imidazole function MPc(Imz) (M: Cd, Hg, Zn and Pd) were synthesized to improve the photocatalyst performances. All physical properties such as total energy, HOMO, LUMO energies of MPc(Imz), as well as their vibrational frequencies have been determined by DFT method using B3LYP theory level at 6-311G (d, p) and sdd basis set. The gap of energy level between work function (WF) of ITO and LUMO of PdPc(Imdz) was 1.53 eV and represents the highest barrier beneficial to electron injection compared to WF of ZnPc(Imz), HgPc(Imz), and CdPc(Imz). Furthermore, the PdPc(Imdz) thin films on indium tin oxide (ITO) glass were prepared by spin coating and vacuum evaporation technique, and were characterized by X-ray diffraction (XRD), surface electron morphology (SEM), atomic force microscopy (AFM), and UV–Vis spectroscopy. The photocatalytic activity of the ITO/glass supported thin films and degradation rates of chlorinated phenols in synthetic seawater, under visible light irradiation were optimized to achieve conversions of 80–90%. Experiments on synthetic seawater samples showed that the chloride-specific increase in photodegradation could be attributed to photochemically generated chloride radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet PdPc(Imz) (3PdPc(Imz)*), reactive oxygen species]. The major 2,3,4,5-Tetrachlorophenol degradation intermediates identified by gas chromatography-mass spectrometry (GC/MS) were 2,3,5-Trichlorophenol, 3,5-dichlorophenol, dichlorodihydroxy-benzene and 3,4,5-trichlorocatechol.


2005 ◽  
Vol 871 ◽  
Author(s):  
Alexandru Vlad ◽  
Dana A. Serban ◽  
Pascal Viville ◽  
Vinciane De Cupere ◽  
Gael Zucchi ◽  
...  

AbstractWe report on the microstructure of 2(3)-9(10)-16(17)-23(24)-tetra(2-decyltetradecyloxy)- phthalocyanine/peryleneoleylamine (PcH2/PTCDI) blends. Thin films, to be used as active layers in organic photovoltaic cells, were prepared by spin coating and spin casting of dilute toluene solutions on indium tin oxide (ITO) substrates. The morphology of the thin films has been studied using Tapping Mode (TM) atomic force microscopy (AFM), whereas Scanning Electron Microscopy (SEM) was used to reveal the various top electrode morphologies, inherent to the different film processing conditions.


2013 ◽  
Vol 832 ◽  
pp. 276-280
Author(s):  
S. Najwa ◽  
A. Shuhaimi ◽  
N. Ameera ◽  
K.M. Hakim ◽  
M. Sobri ◽  
...  

In the present study, ITO nanocolumn was successfully deposited onto a glass substrate by RF magnetron sputtering. The effect of deposition pressure was investigated. X-ray diffraction analysis indicates that the intensity of the (400) peak orientation is highest at sputtering pressure of 5 mTorr. The results from UV-visible (UV-vis) spectroscopy revealed that the optical transmittance above 80 % was obtained from the all samples in the visible range of 400-800 nm. The larger grain size was observed from the top view of field emission scanning electron microscopy (FESEM) image as the sputtering pressure was increase. Dense nanocolumn arrays were obtained from the sample deposited at sputtering pressure of 5 mTorr. The surface roughness were decreased at high sputtering pressure of 10 mTorr was observed from atomic force microscopy (AFM) surface morphology. The electrical properties were obtained using standard two-point probe measurements. The lowest electrical resistivity was determined from the sample that prepared at sputtering pressure of 5 mTorr.


2018 ◽  
Vol 786 ◽  
pp. 373-383
Author(s):  
Heba R. Abd El-Aaty ◽  
Osama Tobail ◽  
Madiha A. Shoeib ◽  
Iman El-Mahallawi

Thin films of mixed amorphous/ microcrystalline-phases have been researched during the last decade, for manufacturing silicon solar cells. In this work the Plasma Enhanced Chemical Vapor Deposition PECVD process parameters; namely dilution ratios and substrate temperature, were controlled to build i-layer at low dilution ratios with moderate substrate temperatures. In this work an intrinsic layer was deposited on Indium Tin Oxide ITO glass by PECVD technique, with different dilution ratios of silane in hydrogen to study the transition from amorphous to microcrystalline phase. The Si:H thin film was evaluated by field emission scanning electron microscopy, x-ray diffraction and atomic force microscopy. The structural transition between a-Si:H to μc-Si:H achieved at dilution ratio 13.3 and substrate temperature 250°C with surface roughness 22.5 nm.


Sign in / Sign up

Export Citation Format

Share Document