scholarly journals Hybrid Nanofibrous Membranes as a Promising Functional Layer for Personal Protection Equipment: Manufacturing and Antiviral/Antibacterial Assessments

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1776
Author(s):  
Latifah Abdullah Alshabanah ◽  
Mohamed Hagar ◽  
Laila A. Al-Mutabagani ◽  
Ghada M. Abozaid ◽  
Salwa M. Abdallah ◽  
...  

In this research work, nanofibrous hybrids are manufactured, characterized, and assessed as active antiviral and antibacterial membranes. In more detail, both polyvinyl alcohol (PVA) and thermoplastic polyurethane (TPU) nanofibrous (NF) membranes and their composites with embedded silver nanoparticles (Ag NPs) are manufactured by an electrospinning process. Their morphological structures have been investigated by a scanning electron microscope (SEM) which revealed a homogenous distribution and almost beads-free fibers in all manufactured samples. Characterization with spectroscopic tools has been performed and proved the successful manufacturing of Ag-incorporated PVA and TPU hybrid nanofibers. The crystalline phase of the nanofibers has been determined using an X-ray diffractometer (XRD) whose patterns showed their crystalline nature at an angle value (2θ) of less than 20°. Subsequent screening of both antiviral and antibacterial potential activities of developed nanohybrid membranes has been explored against different viruses, including SARS-Cov-2 and some bacterial strains. As a novel approach, the current work highlights potential effects of several polymeric hybrids on antiviral and antibacterial activities particularly against SARS-Cov-2. Moreover, two types of polymers have been tested and compared; PVA of excellent biodegradable and hydrophilic properties, and TPU of excellent mechanical, super elasticity, hydrophobicity, and durability properties. Such extreme polymers can serve a wide range of applications such as PPE, filtration, wound healing, etc. Consequently, assessment of their antiviral/antibacterial activities, as host matrices for Ag NPs, is needed for different medical applications. Our results showed that TPU-Ag was more effective than PVA-Ag as HIV-1 antiviral nanohybrid as well as in deactivating spike proteins of SARS-Cov-2. Both TPU-Ag and PVA-Ag nanofibrous membranes were found to have superior antimicrobial performance by increasing Ag concentration from 2 to 4 wt.%. Additionally, the developed membranes showed acceptable physical and mechanical properties along with both antiviral and antibacterial activities, which can enable them to be used as a promising functional layer in Personal Protective Equipment (PPE) such as (surgical gowns, gloves, overshoes, hair caps, etc.). Therefore, the developed functional membranes can support the decrease of both coronavirus spread and bacterial contamination, particularly among healthcare professionals within their workplace settings.

2020 ◽  
pp. 004051752092551
Author(s):  
Javeed A Awan ◽  
Saif Ur Rehman ◽  
Muhammad Kashif Bangash ◽  
Fiaz Hussain ◽  
Jean-Noël Jaubert

Curcumin is a naturally occurring hydrophobic polyphenol compound. It exhibits a wide range of biological activities such as antibacterial, anti-inflammatory, anti-carcinogenic, antifungal, anti-HIV, and antimicrobial activity. In this research work, antimicrobial curcumin nanofibrous membranes are produce by an electrospinning technique using the Eudragit RS 100 (C19H34ClNO6) polymer solution enriched with curcumin. The morphology and chemistry of the membrane are analyzed using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Kirby Bauer disk diffusion tests are carried out to examine the antibacterial effectiveness of the membrane. Experimental results show that the nanofibers produced are of uniform thickness morphology and curcumin is successfully incorporated into the nanofibrous mat, while no chemical bonding was observed between curcumin and the polymer. The antimicrobial curcumin nanofibrous membranes can be effectively applied as antimicrobial barrier in a wide variety of medical applications such as wound healing, scaffolds, and tissue engineering.


Antibiotics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 226 ◽  
Author(s):  
Muhammad Ikram ◽  
Amany Magdy Beshbishy ◽  
Muhammad Kifayatullah ◽  
Adedayo Olukanni ◽  
Muhammad Zahoor ◽  
...  

Our research work was designed to investigate the curative and preventive effects of Carthamus oxycantha root extract against diarrhea and microorganisms. For the antibacterial experiment, the agar well diffusion method was used against standard bacteria Staphylococcus aureus, Escherichia coli, Pseudomonas aeroginosa, and Salmonella typhi, while for the assessment of antidiarrheal activity, castor oil and the magnesium sulfate-induced diarrhea method was used on albino, laboratory-bred (BALB/c) mice at a dose rate of 200 and 400 mg/kg (body weight, b.w) orally. The methanol extract of C. oxycantha significantly (p < 0.001) decreased the frequency of defecation, and wet stools in a dose depended on the manner of after receiving magnesium sulfate (2 g/kg (b.w)) and castor oil (1.0 mL/mice). Furthermore, the extract of C. oxycantha showed concentration-dependent antimicrobial properties against S. aureus followed by S. typhi, E. coli, and P. aeroginosa bacterial strains, with inhibitions ranging from 10.5–15 mm. These findings show significant results that C. oxycantha is effective as an antidiarrheal and antibacterial agent. However, further works are needed to establish its mode of action.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 294
Author(s):  
Elena Cojocaru ◽  
Jana Ghitman ◽  
Gratiela Gradisteanu Pircalabioru ◽  
Cristina Stavarache ◽  
Andrada Serafim ◽  
...  

The present research work is focused on the design and investigation of electrospun composite membranes based on citric acid-functionalized chitosan (CsA) containing reduced graphene oxide-tetraethylene pentamine (CsA/rGO-TEPA) as materials with opportune bio-properties for applications in wound dressings. The covalent functionalization of chitosan (CS) with citric acid (CA) was achieved through the EDC/NHS coupling system and was checked by 1H-NMR spectroscopy and FTIR spectrometry. The mixtures to be electrospun were formulated by adding three concentrations of rGO-TEPA into the 1/1 (w/w) CsA/poly (ethylene oxide) (PEO) solution. The effect of rGO-TEPA concentration on the morphology, wettability, thermal stability, cytocompatibility, cytotoxicity, and anti-biofilm activity of the nanofibrous membranes was extensively investigated. FTIR and Raman results confirmed the covalent and non-covalent interactions that appeared between the system’s compounds, and the exfoliation of rGO-TEPA sheets within the CsA in the presence of PEO (CsA/P) polymer matrix, respectively. SEM analysis emphasized the nanofibrous architecture of membranes and the presence of rGO-TEPA sheets entrapped into the CsA nanofiber structure. The MTT cellular viability assay showed a good cytocompatibility with the highest level of cell development and proliferation registered for the CsA/P composite nanofibrous membrane with 0.250 wt.% rGO-TEPA. The designed nanofibrous membranes could have potential applications in wound dressings, given that they showed a good anti-biofilm activity against Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus bacterial strains.


2020 ◽  
Vol 99 (5) ◽  
pp. 493-497
Author(s):  
M. M. Aslanova ◽  
T. V. Gololobova ◽  
K. Yu. Kuznetsova ◽  
Tamari R. Maniya ◽  
D. V. Rakitina ◽  
...  

Introduction. The purpose of our work was to justify the need to improve the legislative, regulatory and methodological framework and preventative measures in relation to the spread of parasitic infections in the provision of medical care. There is a wide range of pathogens of parasitic infestations that are transmitted to humans through various medical manipulations and interventions carried out in various medical institutions. Contaminated care items and furnishings, medical instruments and equipment, solutions for infusion therapy, medical personnel’s clothing and hands, reusable medical products, drinking water, bedding, suture and dressing materials can serve as a major factor in the spread of parasitic infections in the provision of medical care. Purpose of research is the study of the structure and SMP of parasitic origin, circulating on the objects of the production environment in multi-profile medical and preventive institutions of stationary type in order to prevent the occurrence of their spread within medical institutions. Material and methods. The material for the study was flushes taken from the production environment in 3 multi-profile treatment and prevention institutions of inpatient type: a multi-specialty hospital, a maternity hospital and a hospital specializing in the treatment of patients with intestinal diseases for the eggs of worms and cysts of pathogenic protozoa. Results. During the 2-year monitoring of medical preventive institutions, a landscape of parasitic contamination was found to be obtained from the flushes taken from the production environment objects in the premises surveyed as part of the research work. Discussions. In the course of research, the risk of developing ISMP of parasitic origin was found to be determined by the degree of epidemiological safety of the hospital environment, the number and invasiveness of treatment and diagnostic manipulations and various medical technologies. Conclusion. It is necessary to conduct an expert assessment of regulatory and methodological documents in the field of epidemiological surveillance and sanitary and hygienic measures for the prevention of medical aid related infections of parasitic origin, to optimize the regulatory and methodological base, to develop a number of preventive measures aimed at stopping the spread of parasitic infections in the medical network.


2018 ◽  
Vol 16 (S1) ◽  
pp. S48-S54
Author(s):  
Y. Ez zoubi ◽  
S. Lairini ◽  
A. Farah ◽  
K. Taghzouti ◽  
A. El Ouali Lalami

The purpose of this study was to determine the chemical composition and to evaluate the antioxidant and antibacterial effects of the Moroccan Artemisia herba-alba Asso essential oil against foodborne pathogens. The essential oil of Artemisia herba-alba was analyzed by gas chromatography coupled with mass spectroscopy. The antibacterial activity was assessed against three bacterial strains isolated from foodstuff and three bacterial strains referenced by the ATCC (American Type Culture Collection) using the disk diffusion assay and the macrodilution method. The antioxidant activity was evaluated using the DPPH (2, 2-diphenyl-1- picrylhydrazyl) method. The fourteen compounds of the Artemisia herba-alba essential oil were identified; the main components were identified as β-thujone, chrysanthenone, α-terpineol, α-thujone, α-pinene, and bornyl acetate. The results of the antibacterial activity obtained showed a sensitivity of the different strains to Artemisia herba-alba essential oil with an inhibition diameter of 8.50 to 17.00 mm. Concerning the MICs (minimum inhibitory concentrations), the essential oil exhibited much higher antibacterial activity with MIC values of 2.5 μl/ml against Bacillus subtilis ATCC and Lactobacillus sp. The essential oil was found to be active by inhibiting free radicals with an IC50 (concentration of an inhibitor where the response is reduced by half) value of 2.9 μg/ml. These results indicate the possible use of the essential oil on food systems as an effective inhibitor of foodborne pathogens, as a natural antioxidant, and for potential pharmaceutical applications. However, further research is needed in order to determine the toxicity, antibacterial, and antioxidant effects in edible products.


2020 ◽  
Vol 5 (3) ◽  
pp. 224-235
Author(s):  
Harshal A. Pawar ◽  
Bhagyashree D. Bhangale

Background: Lipid based excipients have increased acceptance nowadays in the development of novel drug delivery systems in order to improve their pharmacokinetic profiles. Drugs encapsulated in lipids have enhanced stability due to the protection they experience in the lipid core of these nano-formulations. Phytosomes are newly discovered drug delivery systems and novel botanical formulation to produce lipophilic molecular complex which imparts stability, increases absorption and bioavailability of phytoconstituent. Curcumin, obtained from turmeric (Curcuma longa), has a wide range of biological activities. The poor solubility and wettability of curcumin are responsible for poor dissolution and this, in turn, results in poor bioavailability. To overcome these limitations, the curcumin-loaded nano phytosomes were developed to improve its physicochemical stability and bioavailability. Objective: The objective of the present research work was to develop nano-phytosomes of curcumin to improve its physicochemical stability and bioavailability. Methods: Curcumin-loaded nano phytosomes were prepared by using phospholipid Phospholipon 90 H using a modified solvent evaporation method. The developed curcumin nano phytosomes were evaluated by particle size analyzer and differential scanning calorimetry (DSC). Results: Results indicated that phytosomes prepared using curcumin and lipid in the ratio of 1:2 show good entrapment efficiency. The obtained curcumin phytosomes were spherical in shape with a size less than 100 nm. The prepared nano phytosomal formulation of curcumin showed promising potential as an antioxidant. Conclusion: The phytosomal complex showed sustained release of curcumin from vesicles. The sustained release of curcumin from phytosome may improve its absorption and lowers the elimination rate with an increase in bioavailability.


Author(s):  
Simeon J. Yates ◽  
Jordana Blejmar

Two workshops were part of the final steps in the Economic and Social Research Council (ESRC) commissioned Ways of Being in a Digital Age project that is the basis for this Handbook. The ESRC project team coordinated one with the UK Defence Science and Technology Laboratory (ESRC-DSTL) Workshop, “The automation of future roles”; and one with the US National Science Foundation (ESRC-NSF) Workshop, “Changing work, changing lives in the new technological world.” Both workshops sought to explore the key future social science research questions arising for ever greater levels of automation, use of artificial intelligence, and the augmentation of human activity. Participants represented a wide range of disciplinary, professional, government, and nonprofit expertise. This chapter summarizes the separate and then integrated results. First, it summarizes the central social and economic context, the method and project context, and some basic definitional issues. It then identifies 11 priority areas needing further research work that emerged from the intense interactions, discussions, debates, clustering analyses, and integration activities during and after the two workshops. Throughout, it summarizes how subcategories of issues within each cluster relate to central issues (e.g., from users to global to methods) and levels of impacts (from wider social to community and organizational to individual experiences and understandings). Subsections briefly describe each of these 11 areas and their cross-cutting issues and levels. Finally, it provides a detailed Appendix of all the areas, subareas, and their specific questions.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 717
Author(s):  
Rita Abou Nader ◽  
Rawan Mackieh ◽  
Rim Wehbe ◽  
Dany El El Obeid ◽  
Jean Marc Sabatier ◽  
...  

Honeybees are one of the most marvelous and economically beneficial insects. As pollinators, they play a vital role in every aspect of the ecosystem. Beehive products have been used for thousands of years in many cultures for the treatment of various diseases. Their healing properties have been documented in many religious texts like the Noble Quran and the Holy Bible. Honey, bee venom, propolis, pollen and royal jelly all demonstrated a richness in their bioactive compounds which make them effective against a variety of bacterial strains. Furthermore, many studies showed that honey and bee venom work as powerful antibacterial agents against a wide range of bacteria including life-threatening bacteria. Several reports documented the biological activities of honeybee products but none of them emphasized on the antibacterial activity of all beehive products. Therefore, this review aims to highlight the antibacterial activity of honey, bee venom, propolis, pollen and royal jelly, that are produced by honeybees.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Razmik Sargsyan ◽  
Arsen Gasparyan ◽  
Gohar Tadevosyan ◽  
Hovik Panosyan

AbstractDue to wide range of secondary metabolites, lichens were used from antiquity as sources of colorants, perfumes and medicaments. This research focuses on exploring the antioxidant, antimicrobial and cytotoxic activities of methanol, ethanol, acetone extracts and aqueous infusions of corticolous lichens sampled from Armenia. Methanol, ethanol and acetone extracts from all tested lichens were active against Gram-positive bacterial strains. The most effective solvent to retrieve antimicrobial compounds was methanol. Aqueous infusions of tested lichens didn’t show any significant antibacterial and antifungal activity. The highest antimicrobial activity was observed for methanol extract of Ramalina sinensis. The minimum inhibitory concentration of methanol extract of Ramalina sinensis were 0.9–1.8 mg mL− 1. Pseudevernia furfuracea demonstrated antifungal activity (Ø 12 mm). Methanol extract of Parmelia sulcata demonstrated largest 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging activity (71 %). The cytotoxicity was measured on human HeLa (cervical carcinoma) cell lines using microculture tetrazolium test assay. The IC50 values estimated for methanol extracts of Peltigera praetextata, Evernia prunastri, Ramalina sinensis and Ramalina farinacea species in HeLa cell line were within 1.8–2.8 mg mL− 1 and considered as non-cytotoxic. Obtained results suggest that studied lichens can be prospective in biotechnologies as alternative sources of antimicrobial and antioxidant substances.


Genetics ◽  
1996 ◽  
Vol 143 (2) ◽  
pp. 961-972 ◽  
Author(s):  
Marie-Jeanne Perrot-Minnot ◽  
Li Rong Guo ◽  
John H Werren

Abstract Wolbachia are cytoplasmically inherited bacteria responsible for reproductive incompatibility in a wide range of insects. There has been little exploration, however, of within species Wolbachia polymorphisms and their effects on compatibility. Here we show that some strains of the parasitic wasp Nasonia vitripennis are infected with two distinct bacterial strains (A and B) whereas others are singly infected (A or B). Double and single infections are confirmed by both PCR amplification and Southern analysis of genomic DNA. Furthermore, it is shown that prolonged larval diapause (the overwintering stage of the wasp) of a double-infected strain can lead to stochastic loss of one or both bacterial strains. After diapause of a double-infected line, sublines were produced with AB, A only, B only or no Wolbachia. A and B sublines are bidirectionally incompatible, whereas males from AB lines are unidirectionally incompatible with females of A and B sublines. Results therefore show rapid development of bidirectional incompatibility within a species due to segregation of associated symbiotic bacteria.


Sign in / Sign up

Export Citation Format

Share Document