scholarly journals Viscoelastic Properties of Cell Structures Manufactured Using a Photo-Curable Additive Technology—PJM

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1895
Author(s):  
Tomasz Kozior ◽  
Czesław Kundera

This research paper reviews the test results involving viscoelastic properties of cellular structure models made with the PolyJet Matrix—PJM additive technology. The designed test specimens were of complex cellular structure and made of three various photo-curable polymer resin types. Materials were selected taking into account the so-called “soft” and “tough” material groups. Compressive stress relaxation tests were conducted in accordance with the recommendations of standard ISO 3384, and the impact of the geometric structure shape and material selection on viscoelastic properties, as well as the most favorable geometric variants of the tested cellular structure models were determined. Mathematica and Origin software was used to conduct a statistical analysis of the test results and determine five-parameter functions approximating relaxation curves. The most favorable rheological was adopted and its mean parameters determined, which enables to match both printed model materials and their geometry in the future, to make a component with a specific rheological response. Furthermore, the test results indicated that there was a possibility of modelling cellular structures within the PJM technology, using support material as well.

2021 ◽  
pp. 2050021
Author(s):  
Shang-Chih Lin ◽  
Yu-Pao Hsu ◽  
Ching-Hsiao Yu ◽  
Chun-Ming Chen ◽  
Po-Quang Chen

Peri-implant debris certainly lead to osteolysis, necrosis, pseudotumor formation, tissue granulation, fibrous capsule contractions, and even implant failure. For the three-dimensional (3D) printed cage, impaction during cage insertion is one of the most potential sources of fracture debris. A finite-element study was carried out to reduce the impact-induced debris of the 3D-printed cage. This study focused on the design strategy of solid and cellular structures along the load-transferring path. Using the finite-element method, the cellular structure of the transforaminal lumbar interbody fusion (TLIF) cage was systematically modified in the following four variations: a noncellular cage (NC), a fully cellular (FC) cage, a solid cage with a cellular structure in the middle concave (MC) zone, and a strengthened cage (SC) in the MC zone. Three comparison indices were considered: the stresses at the cage-instrument interfaces, in the MC zone, and along the specific load-transferring path. The NC and FC were the least and most highly stressed variations at the cage-instrument interfaces and in the MC zone, respectively. Along the entirely load-transferring path, the FC was still the most highly stressed variation. It showed a higher risk of stress fracture for the FC cage. For the MC and SC, the MC zone was consistently more stressed than the directly impacted zone. The further strengthened design of the SC had a lower peak stress (approximately 29.2%) in the MC zone compared with the MC. Prior to 3D printing, the load-transferring path from the cage-instrument interfaces to the cage-tissue interfaces should be determined. The cage-instrument interfaces should be printed as a solid structure to avoid impact-induced fracture. The other stress-concentrated zones should be cautiously designed to optimize the coexistence strategy of the solid and cellular structures.


1959 ◽  
Vol 5 (2) ◽  
pp. 289-294 ◽  
Author(s):  
Marcia Brody ◽  
Albert E. Vatter

The cellular structure of Porphyridium cruentum was studied with both light and electron microscope. The photosynthetic plastid in this red alga was found to be structurally similar to that in the Chlorophyceae and higher green plants. The phycobilins, as well as the chlorophyll, seem to be associated with the lamellae of the plastid. The pyrenoid, a region of low lamellar density, contains no tubules, and does not appear to function in synthesis or storage of reserve material. Grains of floridean starch are located in the cytoplasm, outside the plastid. Typical mitochondrial organelles were not observed. The nucleus is eccentric, and contains a nucleolus located on the inner face of the nucleus, nearest the plastid. The schedule for staining the nucleus is given in detail. Other cell structures (sheath, dictyosomes, etc.) are described. Growing cells in light of intensity leads to disruption of the parallel arrangement of the lamellar characteristic of cells grown in moderate light.


Author(s):  
Marlena Kycko ◽  
Bogdan Zagajewski ◽  
Elżbieta Romanowska ◽  
Magdalena Zwijacz-Kozica ◽  
Samantha Lavender

This research focuses on the effect of trampling on vegetation in high-mountain ecosystems through the electromagnetic spectrum’s interaction with plant pigments, cell structure, water content and other substances that have a direct impact on leaf properties. The most heavily visited part of the High Tatras in Poland was divided into polygons and, after selecting the dominant species within alpine swards, a detailed analysis of trampled and reference patterns was performed. An ASD FieldSpec 3 was used to acquire high-resolution spectral properties of plants, their fluorescence and the leaf chlorophyll content with the ts-ta temperature index and fraction of accumulated radiation in the range of photosynthesis (fAPAR) used as reference data. The results show that, along tourist trails, vegetation adapts to trampling with the impact depending on the species. A lower chlorophyll value was confirmed by a decrease in fluorescence, and the state of cellular structures was degraded in trampled compared to reference species, with a lower leaf reflectance. Also, at the extreme, trampling can eliminate certain species such as Luzula alpino-pilosa.


Author(s):  
Larisa Dmitrievna Popovich ◽  
Svetlana Valentinovna Svetlichnaya ◽  
Aleksandr Alekseevich Moiseev

Diabetes – a disease in which the effect of the treatment substantially depends on the patient. Known a study showed that the use of glucometers with the technology of three-color display of test results facilitates self-monitoring of blood sugar and leads to a decrease in glycated hemoglobin (HbAlc). Purpose of the study: to modeling the impact of using of a glucometer with a color-coded display on the clinical outcomes of diabetes mellitus and calculating, the potential economic benefits of reducing the hospitalization rate of patients with diabetes. Material and methods. Based on data from two studies (O. Schnell et al. and M. Baxter et al.) simulation of the reduction in the number of complications with the use of a glucometer with a color indication. In a study by O. Schnell et al. a decrease of HbA1c by 0.69 percent is shown when using the considered type of glucometers, which was the basis of the model. Results. In the model, the use of a glucometer with a color-coded display for type 1 diabetes led to a decrease in the total number of complications by 9.2 thousand over 5 years per a cohort of 40 thousand patients with different initial levels of HbA1c. In a cohort of 40 thousand patients with type 2 diabetes, the simulated number of prevented complications was 1.7 thousand over 5 years. When extrapolating these data to all patients with diabetes included in the federal register of diabetes mellitus (FRD), the number of prevented complications was 55.4 thousand cases for type 1 diabetes and 67.1 thousand cases for type 2 diabetes. The possible economic effect from the use of the device by all patients with a diagnosis of diabetes, which are included in the FRD, estimated at 1.5 billion rubles for a cohort of patients with type 1 diabetes and 5.3 billion rubles for patients with type 2 diabetes. Conclusion. Improving the effectiveness of self-monitoring, which is the result of the use of glucometers with color indicators, can potentially significantly reduce the incidence of complications in diabetes and thereby provide significant economic benefits to society.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Batyrbek Alimkhanuly ◽  
Joon Sohn ◽  
Ik-Joon Chang ◽  
Seunghyun Lee

AbstractRecent studies on neural network quantization have demonstrated a beneficial compromise between accuracy, computation rate, and architecture size. Implementing a 3D Vertical RRAM (VRRAM) array accompanied by device scaling may further improve such networks’ density and energy consumption. Individual device design, optimized interconnects, and careful material selection are key factors determining the overall computation performance. In this work, the impact of replacing conventional devices with microfabricated, graphene-based VRRAM is investigated for circuit and algorithmic levels. By exploiting a sub-nm thin 2D material, the VRRAM array demonstrates an improved read/write margins and read inaccuracy level for the weighted-sum procedure. Moreover, energy consumption is significantly reduced in array programming operations. Finally, an XNOR logic-inspired architecture designed to integrate 1-bit ternary precision synaptic weights into graphene-based VRRAM is introduced. Simulations on VRRAM with metal and graphene word-planes demonstrate 83.5 and 94.1% recognition accuracy, respectively, denoting the importance of material innovation in neuromorphic computing.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Mathilde Tiennot ◽  
Davide Iannuzzi ◽  
Erma Hermens

AbstractIn this investigation on the mechanical behaviour of paint films, we use a new ferrule-top nanoindentation protocol developed for cultural heritage studies to examine the impact of repeated relative humidity variations on the viscoelastic behaviour of paint films and their mechanical properties in different paint stratigraphies through the changes in their storage and loss moduli. We show that the moisture weathering impact on the micromechanics varies for each of these pigment-oil systems. Data from the nanoindentation protocol provide new insights into the evolution of the viscoelastic properties dsue to the impact of moisture weathering on paint films.


2021 ◽  
pp. 135481662110224
Author(s):  
Liang-Ju Wang ◽  
Ming-Hsiang Chen ◽  
Zhandong Yang ◽  
Ching-Hui (Joan) Su

This study proposes and tests two hypotheses concerning the effects of hotel industry operations on air quality based on data of 26 major tourist cities in China from 2002 to 2017. The empirical analyses take two steps. In the first step, panel regression test results reveal that hotel industry operations (measured by hotel sales revenue) significantly raise the value of particulate matter (PM)2.5 (the key indicator of air quality), supporting the first hypothesis that hotel industry operations deteriorate air quality and providing empirical evidence of the adverse impact of the hotel industry on air quality. In the second step, subsample analyses support the second hypothesis that the impact of hotel sales revenue on air quality diminishes over time. The results from the rolling regression tests validate the existence of a diminishing effect of hotel industry operations on air quality.


2013 ◽  
Vol 41 (6) ◽  
pp. S69 ◽  
Author(s):  
Sue M. Mietzner ◽  
Andrea J. Schaeffer ◽  
Sue M. Mietzner ◽  
Mohamed H. Yassin ◽  
Marilyn M. Wagener ◽  
...  

2014 ◽  
Vol 641-642 ◽  
pp. 427-433
Author(s):  
Shuang Cheng ◽  
Feng Lin ◽  
Pei Long Yang ◽  
Pei Ke Zhu ◽  
Jin Gen Deng ◽  
...  

This paper analyzed the corrosion environment of Missan oilfields and investigated the oilfield country tubular goods used in other similar oilfields. Summarized the effect of partial pressure ratio of H2S/CO2 and Cl-to the corrosion behavior of OCTG. This paper concluded the service condition, test results and anti-corrosion mechanism of carbon steel, low-chrome steel, modified martensitic stainless steel and nickel alloy. Finally arrived at conclusion that the nickel alloy can meet the requirement of Missan oilfields, some literature reported that the modified martensitic stainless steel can apply in H2S/CO2 environment. In the condition that be easy to replace the tubular, carbon steel and low-chrome steel tubular can meet the requirement with corrosion inhibitor.


2021 ◽  
Author(s):  
Wenhuan Zhang ◽  
Zhaoping Deng ◽  
Hongwei Yuan ◽  
Shikai Luo ◽  
Huayin Wen ◽  
...  

AbstractIn this paper, silicone rubber materials with foam/solid alternating multilayered structures were successfully constructed by combining the two methods of multilayered hot-pressing and supercritical carbon dioxide (SCCO2) foaming. The cellular morphology and mechanical properties of the foam/solid alternating multilayered silicone rubber materials were systematically studied. The results show that the growth of the cell was restrained by the solid layer, resulting in a decrease in the cell size. In addition, the introduction of the solid layer effectively improved the mechanical properties of the microcellular silicone rubber foam. The tensile strength and compressive strength of the foam/solid alternating multilayered silicone rubber materials reached 5.39 and 1.08 MPa, which are 46.1% and 237.5% of the pure silicone rubber foam, respectively. Finite element analysis (FEA) was applied and the results indicate that the strength and proportion of the solid layer played important roles in the tensile strength of the foam/solid alternating multilayered silicone rubber materials. Moreover, the small cellular structures in silicone rubber foam can provided a high supporting counterforce during compression, meaning that the microcellular structure of silicone rubber foam improved the compressive property compared to that for the large cellular structure of silicone rubber foam.


Sign in / Sign up

Export Citation Format

Share Document