scholarly journals Corn Starch-Chitosan Nanocomposite Film Containing Nettle Essential Oil Nanoemulsions and Starch Nanocrystals: Optimization and Characterization

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2113
Author(s):  
Fatemeh Kalateh-Seifari ◽  
Shima Yousefi ◽  
Hamed Ahari ◽  
Seyed Hedayat Hosseini

In the current study, nanocomposite films were produced based on corn starch:chitosan (CS:CH) biopolymers and the films were reinforced with nettle essential oil nanoemulsions (NEONEs) and starch nanocrystals (SNCs) to improve their physicochemical and mechanical properties. CS: CH at 70:30, 50:50, and 30:70 (w/w) ratios; SNCs at 2, 4, and 6% (w/w), and NEONEs at 0.5, 1, and 1.5% (w/w) were selected as variables. Then the various physical and mechanical attributes of chitosan-starch blended film containing SNCs and NEONEs were optimized using response surface methodology. The desirability function technique for the second-order polynomial models revealed that the following results could be achieved as the optimized treatment: water solubility of 51.56%; water absorption capacity of 128.75%; surface color of L (89.60), a (0.96), and b (1.90); water vapor permeability of 0.335 g/s Pa m, oxygen permeability of 2.60 cm3 μm/m2 d kPa; thickness of 154.41 µm, elongation at break of 53.54%; and tensile strength of 0.20 MPa at CS:CH of 38:62, SNC of 6.0%, and NEONEs of 0.41%. The nanocomposite film obtained can be employed as a novel biofunctional film with boosted physical mechanical and physical characteristics for food packaging applications.

Author(s):  
Viviane Machado Azevedo ◽  
Ana Carolina Salgado De Oliveira ◽  
Soraia Vilela Borges ◽  
Josiane Callegaro Raguzzoni ◽  
Marali Vilela Dias ◽  
...  

Abstract: Studies have been made to explore the utilization of pea proteins in terms of edible film and coating materials. The reinforcement of biopolymer films with plant-based nanocrystals has been applied in order to improve their performance properties. The objective was to evaluate the effect of the incorporation of corn starch nanocrystals (SN) (0-15%) in pea protein isolate films. Thermal analysis showed that the addition of up to 5% starch nanocrystals increased thermal stability. A 22.3% decrease was observed in water vapor permeability with the addition of SN. Increasing the SN concentration altered the arrangement of the structure to interleaved, in the matrix, as seen in transmission micrographs. This study showed that the use of corn starch nanocrystals as reinforcement in pea protein films had an effect on the films. The incorporation of up to 10% SN is suggested in order to increase the performance properties of pea protein isolate films.


2013 ◽  
Vol 469 ◽  
pp. 156-161 ◽  
Author(s):  
Hong Pan ◽  
Dan Xu ◽  
Qin Liu ◽  
Hui Qing Ren ◽  
Min Zhou

Starch-based nanocomposite films were fabricated by the incorporation of different amounts of nanodiamond (ND) particles. These films were characterized by SEM, FT-IR, TGA, tensile testing and water vapor permeability measurement. It was observed that at low loadings, ND dispersed well in starch matrix. However, as the loading amount increased, aggregates as large as several micrometers appeared. The physical blending of ND with starch didnt change the thermal degradation mechanisms of starch films, only increased the char residues. As the ND loading increased, the tensile strength of composite films increased but the elongation at break decreased. However, the water vapor permeability increased as the loading of ND increased due to the increased microspores in films. With further modifications, ND may be considered as a novel of biocompatible nanofillers for reinforcement of biopolymers for food packaging applications.


2020 ◽  
Vol 40 (10) ◽  
pp. 848-858
Author(s):  
Fatima Zohra Yakdoumi ◽  
Assia Siham Hadj-Hamou

AbstractThe main objective of this study was to assess the effectiveness of TiO2-Al2O3 nano-mixture used as filler in improving packaging films performance. Polylactic acid/titanium dioxide (PLA/TiO2), polylactic acid/alumina (PLA/Al2O3) and polylactic acid/TiO2-Al2O3 (PLA/TiO2-Al2O3) nanocomposite films were successfully prepared via melt mixing process and thoroughly characterized by FTIR spectroscopy, X-ray diffraction (XRD), UV–vis spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The properties such as heat resistant, barrier, mechanical and antimicrobial properties, required for food packaging have also been investigated. As compared to the neat PLA film, the developed PLA nanocomposites have displayed superior properties particularly the PLA/ TiO2-Al2O3 nanocomposite film. This resulted material has showed a 22 °C increase in its thermal stability versus 14 and 2 °C in the cases of PLA/TiO2 and PLA/Al2O3 respectively, and a 54% reduction of its water vapor permeability in comparison with 47% for PLA/TiO2 and 39% for PLA/Al2O3. In addition, the PLA/TiO2-Al2O3 had a significant enhancement of its mechanical properties. Its Young modulus increased by 102% unlike 23.60% for the PLA/TiO2 and 44.66% for the PLA/Al2O3. It was also noticed that this nanocomposite film demonstrated stronger antibacterial activity than the two others. The bacterial growth inhibition effect of TiO2-Al2O3 nano-mixture against Pseudomonas aeruginosa and Escherichia coli bacteria was more effective than that of its two constituents.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1507
Author(s):  
Rut Fernández-Marín ◽  
Muhammad Mujtaba ◽  
Demet Cansaran-Duman ◽  
Ghada Ben Salha ◽  
Mª Ángeles Andrés Sánchez ◽  
...  

Herein, the effect of three deterpenated fractions from Origanum majorana L. essential oil on the physicochemical, mechanical and biological properties of chitosan/β-chitin nanofibers-based nanocomposite films were investigated. In general, the incorporation of Origanum majorana L. original essential oil or its deterpenated fractions increases the opacity of the nanocomposite films and gives them a yellowish color. The water solubility decreases from 58% for chitosan/β-chitin nanofibers nanocomposite film to around 32% for the nanocomposite films modified with original essential oil or its deterpenated fractions. Regarding the thermal stability, no major changes were observed, and the mechanical properties decreased. Interestingly, data show differences on the biological properties of the materials depending on the incorporated deterpenated fraction of Origanum majorana L. essential oil. The nanocomposite films prepared with the deterpenated fractions with a high concentration of oxygenated terpene derivatives show the best antifungal activity against Aspergillus niger, with fungal growth inhibition of around 85.90%. Nonetheless, the only nanocomposite film that does not present cytotoxicity on the viability of L929 fibroblast cells after 48 and 72 h is the one prepared with the fraction presenting the higher terpenic hydrocarbon content (87.92%). These results suggest that the composition of the deterpenated fraction plays an important role in determining the biological properties of the nanocomposite films.


2020 ◽  
pp. 089270572096215 ◽  
Author(s):  
Sajed Amjadi ◽  
Saghar Nouri ◽  
Roghieh Ashrafi Yorghanlou ◽  
Leila Roufegarinejad

The present study aimed to fabrication and characterization the hydroxypropyl methylcellulose (HPMC) films containing different concentrations of sodium alginate (0.5, 1, and 3% v/v) and Dracocephalum moldavica L. essential oil (DEO; 1, 3 and 5% v/v) as a biodegradable active packaging system. FTIR analysis confirmed the interaction of alginate groups with the hydroxyl group of HPMC. SEM images indicated that the addition of alginate decreased the size and number of the cracks. As a result, the incorporation of alginate and DEO significantly (p < 0.05) improved the water barrier properties of films and the lowest values of water vapor permeability (.38 × 10−10 g/m·h·Pa), moisture content (6.30 ± 0.08%) and water solubility (29.49 ± 0.04%) were related to the sample containing 1.5% alginate and 5% DEO. Additionally, blending with alginate significantly (p < 0.05) improved the mechanical properties of the films and the blended film sample with 0.5% alginate showed the highest tensile strength (16.13 MPa). The blend films showed high thickness and whiteness Index. Also, the antioxidant activity of the films was enhanced by incorporation DEO and the highest DPPH scavenging activity (74.58 ± 2.31%) was attributed to the samples incorporated with 5% DEO. In conclusion, the fabricated blend film showed considerable potential for active food packaging.


2021 ◽  
Vol 1021 ◽  
pp. 280-289
Author(s):  
Abdulkader M. Alakrach ◽  
Awad A. Al-Rashdi ◽  
Mohamed Khalid Al-Omar ◽  
Taha M. Jassam ◽  
Sam Sung Ting ◽  
...  

In this study, PLA/TiO2 and PLA/HNTs-TiO2 nanocomposites films were fabricated via solution casting method. By testing the film density, solubility, water contact angle and water vapor permeability, the PLA nanocomposite films, the comprehensive performances of the nanocomposites were analysed. The outcomes demonstrated that maximum film density of PLA/TiO2 and PLA/HNTs-TiO2 nanocomposites films increased gradually with the increasing of nanofiller loadings. Moreover, the incorporation of TiO2 and HNTs-TiO2 significantly decreased the water vapor transmittance rate of the nanocomposite films with a slight priority to the addition of HNTs-TiO2, the water solubility was significantly improved with the addition of both nanofillers. Furthermore, the barrier properties were developed with the addition of both TiO2 and HNTs-TiO2 especially after the addition of low nanofiller loadings. Overall, the performance of the PLA/HNTs-TiO2 nanocomposite films was better than that PLA/TiO2 film. Nevertheless, both of the PLA nanocomposite samples achieved the requests of food packaging applications.


2020 ◽  
pp. 096739112092242
Author(s):  
Aanchal Mittal ◽  
Sangeeta Garg ◽  
Anshuman Premi ◽  
Ardhendu Sekhar Giri

In the present work, corn starch was grafted with oleic acid in the presence of redox initiators. Starch nanocrystals (SNCs) were synthesized using acid hydrolysis method and nanocomposite films were prepared by incorporation of SNCs into polyvinyl alcohol/starch (PVA/S) and PVA/grafted starch (PVA/GS) matrix, separately. It was observed that SNCs exhibited a platelet-like shape and in the size range of 200 nm. The increased crystallinity of SNCs indicated the removal of the amorphous and waxy region after acid hydrolysis of starch. Scanning electron micrographs of nanocomposite films showed good dispersion of SNCs within the PVA/GS matrix compared to the PVA/S matrix. The tensile strength of the nanocomposite films increased significantly with the reinforcement of SNCs into PVA/S matrix. Water uptake (%) of PVA/GS nanocomposite film decreased by 38.25% compared to the PVA/S nanocomposite film. Reinforcement of SNCs with PVA/S matrix improved the biodegradability of the films and was higher than PVA/S film. PVA/S nanocomposite film showed 32.4% weight loss after 120 days of soil burial degradation test. Thus, the obtained nanocomposite films can provide a potential alternative to the synthetic and nondegradable packaging films used worldwide.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2569
Author(s):  
Mia Kurek ◽  
Nasreddine Benbettaieb ◽  
Mario Ščetar ◽  
Eliot Chaudy ◽  
Maja Repajić ◽  
...  

Chitosan and pectin films were enriched with blackcurrant pomace powder (10 and 20% (w/w)), as bio-based material, to minimize food production losses and to increase the functional properties of produced films aimed at food coatings and wrappers. Water vapor permeability of active films increased up to 25%, moisture content for 27% in pectin-based ones, but water solubility was not significantly modified. Mechanical properties (tensile strength, elongation at break and Young’s modulus) were mainly decreased due to the residual insoluble particles present in blackcurrant waste. FTIR analysis showed no significant changes between the film samples. The degradation temperatures, determined by DSC, were reduced by 18 °C for chitosan-based samples and of 32 °C lower for the pectin-based samples with blackcurrant powder, indicating a disturbance in polymer stability. The antioxidant activity of active films was increased up to 30-fold. Lightness and redness of dry films significantly changed depending on the polymer type. Significant color changes, especially in chitosan film formulations, were observed after exposure to different pH buffers. This effect is further explored in formulations that were used as color change indicators for intelligent biopackaging.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 618 ◽  
Author(s):  
Hynek Beneš ◽  
Jana Kredatusová ◽  
Jakub Peter ◽  
Sébastien Livi ◽  
Sonia Bujok ◽  
...  

Currently, highly demanded biodegradable or bio-sourced plastics exhibit inherent drawbacks due to their limited processability and end-use properties (barrier, mechanical, etc.). To overcome all of these shortcomings, the incorporation of lamellar inorganic particles, such as layered double hydroxides (LDH) seems to be appropriate. However, LDH delamination and homogenous dispersion in a polymer matrix without use of harmful solvents, remains a challenging issue, which explains why LDH-based polymer nanocomposites have not been scaled-up yet. In this work, LDH with intercalated ionic liquid (IL) anions were synthesized by a direct co-precipitation method in the presence of phosphonium IL and subsequently used as functional nanofillers for in-situ preparation of poly (butylene adipate-co-terephthalate) (PBAT) nanocomposites. The intercalated IL-anions promoted LDH swelling in monomers and LDH delamination during the course of in-situ polycondensation, which led to the production of PBAT/LDH nanocomposites with intercalated and exfoliated morphology containing well-dispersed LDH nanoplatelets. The prepared nanocomposite films showed improved water vapor permeability and mechanical properties and slightly increased crystallization degree and therefore can be considered excellent candidates for food packaging applications.


Sign in / Sign up

Export Citation Format

Share Document