scholarly journals Green Synthesized Chitosan/Chitosan Nanoforms/Nanocomposites for Drug Delivery Applications

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2256
Author(s):  
Iyyakkannu Sivanesan ◽  
Judy Gopal ◽  
Manikandan Muthu ◽  
Juhyun Shin ◽  
Selvaraj Mari ◽  
...  

Chitosan has become a highlighted polymer, gaining paramount importance and research attention. The fact that this valuable polymer can be extracted from food industry-generated shell waste gives it immense value. Chitosan, owing to its biological and physicochemical properties, has become an attractive option for biomedical applications. This review briefly runs through the various methods involved in the preparation of chitosan and chitosan nanoforms. For the first time, we consolidate the available scattered reports on the various attempts towards greens synthesis of chitosan, chitosan nanomaterials, and chitosan nanocomposites. The drug delivery applications of chitosan and its nanoforms have been reviewed. This review points to the lack of systematic research in the area of green synthesis of chitosan. Researchers have been concentrating more on recovering chitosan from marine shell waste through chemical and synthetic processes that generate toxic wastes, rather than working on eco-friendly green processes—this is projected in this review. This review draws the attention of researchers to turn to novel and innovative green processes. More so, there are scarce reports on the application of green synthesized chitosan nanoforms and nanocomposites towards drug delivery applications. This is another area that deserves research focus. These have been speculated and highlighted as future perspectives in this review.

RSC Advances ◽  
2016 ◽  
Vol 6 (29) ◽  
pp. 24142-24153
Author(s):  
Andreea S. Voda ◽  
Kevin Magniez ◽  
Nisa V. Salim ◽  
Cynthia Wong ◽  
Qipeng Guo

We report for the first time the use of Nα-Boc-l-tryptophan for the synthesis of amphiphilic BAB triblock copolymers for potential drug delivery applications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 821
Author(s):  
Iyyakkannu Sivanesan ◽  
Manikandan Muthu ◽  
Judy Gopal ◽  
Nazim Hasan ◽  
Syed Kashif Ali ◽  
...  

Chitin (poly-N-acetyl-D-glucosamine) is the second (after cellulose) most abundant organic polymer. In its deacetylated form—chitosan—becomes a very interesting material for medical use. The chitosan nano-structures whose preparation is described in this article shows unique biomedical value. The preparation of nanochitosan, as well as the most vital biomedical applications (antitumor, drug delivery and other medical uses), have been discussed in this review. The challenges confronting the progress of nanochitosan from benchtop to bedside clinical settings have been evaluated. The need for inclusion of nano aspects into chitosan research, with improvisation from nanotechnological inputs has been prescribed for breaking down the limitations. Future perspectives of nanochitosan and the challenges facing nanochitosan applications and the areas needing research focus have been highlighted.


RSC Advances ◽  
2018 ◽  
Vol 8 (55) ◽  
pp. 31777-31782 ◽  
Author(s):  
Rashmi Rashmi ◽  
Abhishek K. Singh ◽  
Katharina Achazi ◽  
Boris Schade ◽  
Christoph Böttcher ◽  
...  

Non-ionic bolaamphiphiles as nanocarrier for biomedical applications.


2019 ◽  
Vol 55 (53) ◽  
pp. 7683-7686 ◽  
Author(s):  
Poulami Chakraborty ◽  
Parthasarathi Dastidar

An easy access to topical gels (both hydro- and organogels) derived from an anti-cancer prodrug namely 5-fluorouracil acetic acid (5-FuA) achieved by exploiting a simple salt formation strategy is reported for the first time.


Nano LIFE ◽  
2012 ◽  
Vol 02 (01) ◽  
pp. 1230001 ◽  
Author(s):  
HONGQIAN BAO ◽  
YONGZHENG PAN ◽  
LIN LI

Graphene, a two-dimensional nanomaterial reported for the first time in 2004, has been widely investigated for its novel physicochemical properties and potential applications. This review selectively summarizes the recent progress in using graphene-based nanomaterials for various biomedical applications. In particular, graphene-based sensors and biosensors, which are classified according to different sensing mechanisms and targets, are thoroughly discussed. Next, the utilization of graphene as nanocarriers for drug delivery, gene delivery and nanomedicine are demonstrated for potential cancer therapies. Finally, other graphene-based matrices, nanoscaffolds, and composites, which are used in bioapplications, are presented, followed by conclusions and perspective.


2021 ◽  
Vol 22 (19) ◽  
pp. 10755
Author(s):  
Chiara Tramontano ◽  
Bruno Miranda ◽  
Giovanna Chianese ◽  
Luca De Stefano ◽  
Carlo Forestiere ◽  
...  

Inorganic diatomite nanoparticles (DNPs) have gained increasing interest as drug delivery systems due to their porous structure, long half-life, thermal and chemical stability. Gold nanoparticles (AuNPs) provide DNPs with intriguing optical features that can be engineered and optimized for sensing and drug delivery applications. In this work, we combine DNPs with gelatin stabilized AuNPs for the development of an optical platform for Galunisertib delivery. To improve the DNP loading capacity, the hybrid platform is capped with gelatin shells of increasing thicknesses. Here, for the first time, full optical modeling of the hybrid system is proposed to monitor both the gelatin generation, degradation, and consequent Galunisertib release by simple spectroscopic measurements. Indeed, the shell thickness is optically estimated as a function of the polymer concentration by exploiting the localized surface plasmon resonance shifts of AuNPs. We simultaneously prove the enhancement of the drug loading capacity of DNPs and that the theoretical modeling represents an efficient predictive tool to design polymer-coated nanocarriers.


2019 ◽  
Vol 7 (2) ◽  
pp. 224-232 ◽  
Author(s):  
Mohammadjavad Eslamian ◽  
Milad Khorrami ◽  
Ning Yi ◽  
Sheereen Majd ◽  
Mohammad Reza Abidian

In this study, for the first time, we systematically investigate the effect of processing parameters on the size and alignment of electrospun PLGA fibers. We demonstrate that the alignment of the fibers has an impact on the release of encapsulated drug from these fibers.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 656 ◽  
Author(s):  
Rafael Contreras-Cáceres ◽  
Laura Cabeza ◽  
Gloria Perazzoli ◽  
Amelia Díaz ◽  
Juan Manuel López-Romero ◽  
...  

Polymeric nanofibers (NFs) have been extensively reported as a biocompatible scaffold to be specifically applied in several researching fields, including biomedical applications. The principal researching lines cover the encapsulation of antitumor drugs for controlled drug delivery applications, scaffolds structures for tissue engineering and regenerative medicine, as well as magnetic or plasmonic hyperthermia to be applied in the reduction of cancer tumors. This makes NFs useful as therapeutic implantable patches or mats to be implemented in numerous biomedical researching fields. In this context, several biocompatible polymers with excellent biocompatibility and biodegradability including poly lactic-co-glycolic acid (PLGA), poly butylcyanoacrylate (PBCA), poly ethylenglycol (PEG), poly (ε-caprolactone) (PCL) or poly lactic acid (PLA) have been widely used for the synthesis of NFs using the electrospun technique. Indeed, other types of polymers with stimuli-responsive capabilities has have recently reported for the fabrication of polymeric NFs scaffolds with relevant biomedical applications. Importantly, colloidal nanoparticles used as nanocarriers and non-biodegradable structures have been also incorporated by electrospinning into polymeric NFs for drug delivery applications and cancer treatments. In this review, we focus on the incorporation of drugs into polymeric NFs for drug delivery and cancer treatment applications. However, the principal novelty compared with previously reported publications is that we also focus on recent investigations concerning new strategies that increase drug delivery and cancer treatments efficiencies, such as the incorporation of colloidal nanoparticles into polymeric NFs, the possibility to fabricate NFs with the capability to respond to external environments, and finally, the synthesis of hybrid polymeric NFs containing carbon nanotubes, magnetic and gold nanoparticles, with magnetic and plasmonic hyperthermia applicability.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 173
Author(s):  
Wei Yang ◽  
Anqianyi Tu ◽  
Yuchen Ma ◽  
Zhanming Li ◽  
Jie Xu ◽  
...  

The application of chitosan (CS) and whey protein (WP) alone or in combination in 3D/4D printing has been well considered in previous studies. Although several excellent reviews on additive manufacturing discussed the properties and biomedical applications of CS and WP, there is a lack of a systemic review about CS and WP bio-inks for 3D/4D printing applications. Easily modified bio-ink with optimal printability is a key for additive manufacturing. CS, WP, and WP–CS complex hydrogel possess great potential in making bio-ink that can be broadly used for future 3D/4D printing, because CS is a functional polysaccharide with good biodegradability, biocompatibility, non-immunogenicity, and non-carcinogenicity, while CS–WP complex hydrogel has better printability and drug-delivery effectivity than WP hydrogel. The review summarizes the current advances of bio-ink preparation employing CS and/or WP to satisfy the requirements of 3D/4D printing and post-treatment of materials. The applications of CS/WP bio-ink mainly focus on 3D food printing with a few applications in cosmetics. The review also highlights the trends of CS/WP bio-inks as potential candidates in 4D printing. Some promising strategies for developing novel bio-inks based on CS and/or WP are introduced, aiming to provide new insights into the value-added development and commercial CS and WP utilization.


2020 ◽  
Vol 8 (39) ◽  
pp. 8992-9027 ◽  
Author(s):  
Raj Kumar ◽  
Kunal Mondal ◽  
Pritam Kumar Panda ◽  
Ajeet Kaushik ◽  
Reza Abolhassani ◽  
...  

Nanosystems have shown encouraging outcomes and substantial progress in the areas of drug delivery and biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document