scholarly journals Thermal Behavior of Mixed Plastics at Different Heating Rates: I. Pyrolysis Kinetics

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3413
Author(s):  
Ibrahim Dubdub ◽  
Mohammed Al-Yaari

The amount of generated plastic waste has increased dramatically, up to 20 times, over the past 70 years. More than 50% of municipal plastic waste is composed of polystyrene (PS), polypropylene (PP), and low-density polyethylene (LDPE) products. Therefore, this work has developed a kinetic model that can fully describe the thermal decomposition of plastic mixtures, contributing significantly towards the efficiency of plastic waste management and helping to save the environment. In this work, the pyrolysis of different plastic mixtures, consisting of PP, PS, and LDPE, was performed using a thermogravimetric analyzer (TGA) at three different heating rates (5, 20, and 40 K/min). Four isoconversional models, namely Friedman, Flynn–Wall–Qzawa (FWO), Kissinger–Akahira–Sunose (KAS), and Starink, have been used to obtain the kinetic parameters of the pyrolysis of different plastic mixtures with different compositions. For the equi-mass binary mixtures of PP and PS, the average values of the activation energies were 181, 144 ± 2 kJ/mol obtained using the Freidman and integral (FWO, KAS, and Starink) models, respectively. However, higher values were obtained for the equi-mass ternary plastic mixtures of PP, PS, and LDPE (Freidman: 255 kJ/mol, FWO: 222 kJ/mol, KAS: 223 kJ/mol, and Starink: 222 kJ/mol). The most suitable reaction mechanisms were obtained using the Coats–Redfern model. The results confirm that the most controlling reaction mechanisms obey the first-order (F1) and the third-order (F3) reactions for the pyrolysis of the equi-mass binary (PS and PP) and equi-mass ternary (PS, PP, and LDPE) mixtures, respectively. Finally, the values of the pre-exponential factor (A) were obtained using the four isoconversional models and the linear relationship between ln A and the activation energy was confirmed.

2014 ◽  
Vol 18 (3) ◽  
pp. 833-842 ◽  
Author(s):  
Esin Apaydin-Varol ◽  
Sevgi Polat ◽  
Ayse Putun

This study covers the thermal degradation of polycarbonate by means of Thermogravimetric Analyzer coupled with Fourier transform infrared spectrometer (TGA-FTIR). Thermogravimetric analysis of polycarbonate was carried out at four different heating rates of 5, 10, 15, and 20?C per minute from 25?C to 1000?C under nitrogen atmosphere. The results indicated that polycarbonate was decomposed in the temperature range of 425-600?C. The kinetic parameters, such as activation energy, pre-exponential factor and reaction order were determined using five different kinetic models; namely Coast-Redfern, Friedman, Kissinger, Flynn-Wall-Ozawa (FWO), and Kissinger-Akahira-Sunose (KAS). Overall decomposition reaction order was determined by Coats-Redfern method as 1.5. Average activation energy was calculated as 150.42, 230.76, 216.97, and 218.56 kJ/mol by using Kissinger, Friedman, FWO, and KAS models, respectively. Furthermore, the main gases released during the pyrolysis of polycarbonate were determined as CO2, CH4, CO, H2O, and other lower molecular weight hydrocarbons such as aldehydes, ketones and carbonyls by using thermogravimetric analyzer coupled with Fourier transform infrared spectrometer.


2014 ◽  
Vol 955-959 ◽  
pp. 2803-2808
Author(s):  
Ren Ping Liu ◽  
Rui Yao ◽  
Hui Li

Gentamicin bacteria residue contains high organic compound. The technology of thermochemical conversion can effectively solve the problem of bulk gentamicin residue disposal, research on pyrolysis kinetics of the reaction is the basic work for thermochemical conversion . In this paper, Pyrolysis experiments were carried out in a thermogravimetric analyzer under inert conditions and operated at different heating rates (5, 10, 20 K/min).Two different kinetic models, the iso-conversional Ozawa–Flynn–Wall (Ozawa) models and Satava method were applied on TGA data of gentamicin residue to calculate the kinetic parameters including activation energy, pre-exponential factor and Mechanism function. The results showed that: gentamicin bacteria residue lost most weight of it between 100-650 °C , about 74.23% of the whole sample can decompose under high temperature. The pyrolysis function for gentamicin residue should be G(α) =[-ln(1-α)]3.


2010 ◽  
Vol 660-661 ◽  
pp. 593-598 ◽  
Author(s):  
Kássia Graciele dos Santos ◽  
Taisa S. Lira ◽  
Valéria V. Murata ◽  
Marco Gianesella ◽  
Marcos A.S. Barrozo

The pyrolysis kinetics of sugarcane bagasse in nitrogen flow was studied by thermogravimetric analysis from room temperature to 1173 K at different heating rates (1.5, 3, 5, 10, 15, 20, 30 and 50 K/min). As there are three distinct devolatilization peaks in the DTG curve, each peak was associated to thermal decomposition of an individual biomass subcomponent (hemicellulose, cellulose and lignin). The kinetic model adopted was a consecutive reactions model. The kinetic parameters of the pyrolysis process, such as activation energy and pre-exponential factor, were calculated by least squares non-linear method and Scilab are used as the simulation tool. The simulated results showed a good agreement with the experimental data and the parameters found are similar to reported by the literature.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1763 ◽  
Author(s):  
Samy Yousef ◽  
Justas Eimontas ◽  
Nerijus Striūgas ◽  
Mohammed Ali Abdelnaby

Recently, a pyrolysis process has been adapted as an emerging technology to convert metalized food packaging plastics waste (MFPWs) into energy products with a high economic benefit. In order to upscale this technology, the knowledge of the pyrolysis kinetic of MFPWs is needed and studying these parameters using free methods is not sufficient to describe the last stages of pyrolysis. For a better understanding of MFPWs pyrolysis kinetics, independent parallel reactions (IPR) kinetic model and its modification model (MIPR) were used in the present research to describe the kinetic parameters of MFPWs pyrolysis at different heating rates (5–30 °C min−1). The IPR and MIPR models were built according to thermogravimetric (TG)-Fourier-transform infrared spectroscopy (FTIR)-gas chromatography−mass spectrometry (GC-MS) results of three different types of MFPWs (coffee, chips, and chocolate) and their mixture. The accuracy of the developed kinetic models was evaluated by comparing the conformity of the DTG experimental results to the data calculated using IPR and MIPR models. The results showed that the dependence of the pre-exponential factor on the heating rate (as in the case of MIPR model) led to better conformity results with high predictability of kinetic parameters with an average deviation of 2.35% (with an improvement of 73%, when compared to the IPR model). Additionally, the values of activation energy and pre-exponential factor were calculated using the MIPR model and estimated at 294 kJ mol−1 and 5.77 × 1017 kJ mol−1 (for the mixed MFPW sample), respectively. Finally, GC-MS results illustrated that pentane (13.8%) and 2,4-dimethyl-1-heptene isopropylcyclobutane (44.31%) represent the main compounds in the released volatile products at the maximum decomposition temperature.


2013 ◽  
Vol 772 ◽  
pp. 313-318
Author(s):  
Hong Shuang Du ◽  
Xiang Yu Li ◽  
Xue Yong Ren ◽  
Yan Xue Han

The larch bark was examined by non-isothermal means to determine the mass loss kinetics of the thermal decomposition with linear temperature programming in nitrogen atmosphere. In this work, mechanism equation of = was used forCoats-Redfern integral methodat the different heating rates. The apparent activation energy, pre-exponential factor and the pyrolysis kinetic equations at the different heating rates were obtained. The pyrolysis temperature area was divided into two separate temperature regions for the pyrolysis kinetic equation and the two components were decomposed respectively at the two separate temperature regions. The global mass loss rate of the bark is considered as controlled respectively by the reactions of the two components respectively during the lower and higher temperature ranges. The kinetics of the two components are found to abide by the mechanism equation of =, which gave the best fits to the experimental data. The obtained kinetic equations of the bark at the different heating rates were additionally validated by the reasonable agreement between the experimental and calculated results.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Christiano Bruneli Peres ◽  
André Henrique Rosa ◽  
Leandro Cardoso de Morais

AbstractBiomass is considering a source of organic carbon, which can replace fossil resources by using pyrolysis process, therefore an efficient biomass thermal modification technology has been target of so much research. The objective of this work is to study the potential energy of sugarcane bagasse and thermochemically modified bagasse for bioenergy potential for use in heat generation and energy. The thermal analysis was conducted by powder-shaped exposure of the three study samples (SB, AC-1, and AC-2) at three heating rates of (5, 7.5 and 10 °C min−1), it was possible to identify three stages of thermal degradation and study some thermochemical reactions, using two iso-conversional models, Kissinger–Akahira–Sunose (KAS) and Ozawa–Flynn–Wall (OFW) to calculate some kinetic parameters, such as activation energy (Ea) and pre-exponential factor (A). First step was about the devolatilization of volatile matter, moisture, and other substances. Degradation of hemicellulose, cellulose and lignin were shown in a second step. Characterization analyzes, such as SEM–EDX and textural parameters of the samples, show the presence of carbon in samples SB and AC-1. Due to SEM analyzes, morphological differences between the samples are showing as AC-1 and AC-2 samples present a rougher shape with pores, on the other hand, SB sample show a fibrous shape. In conclusion, sugarcane bagasse and thermochemically modified bagasse, show very promising results, for future studies, such as for bioenergy potential.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3977
Author(s):  
Magdalena Matusiak ◽  
Radosław Ślęzak ◽  
Stanisław Ledakowicz

The main purpose of this paper was to compare the pyrolysis kinetics of three types of energy crops: Miscanthus giganteus, Sida hermaphrodita, and Sorghum Moench. Studies were conducted in thermobalance. Feedstock samples were heated up from ambient temperature to 600 °C under an inert argon atmosphere. Three heating rates of β = 5, 10, and 20 °C/min were applied. Reactions occurring in the given temperature ranges were grouped together into so-called lumps identified by the deconvolution of derivative thermogravimetry (DTG) curves that corresponded to biomass compositions (hemicellulose, cellulose, and lignin). For the estimation of the activation energy and pre-exponential factor, the Friedman and Ozawa–Flynn–Wall methods were used. The final kinetic parameters were determined by nonlinear regression assuming that thermal decomposition proceeded via three parallel independent reactions of the nth order. The activation energy of hemicellulose, cellulose and lignin was determined to be in the range of 92.9–97.7, 190.1–192.5, and 170–175.2 kJ/mol, respectively. The reaction order was in the range of 3.35–3.99 for hemicellulose, 1.38–1.93 for cellulose, and 3.97–3.99 for lignin. The obtained results allow us to estimate the pyrolytic potential of energy crops selected for this study, and can be used in designing efficient pyrolizers for these materials.


2019 ◽  
Vol 108 ◽  
pp. 02017
Author(s):  
Grzegorz Czerski ◽  
Przemysław Grzywacz ◽  
Katarzyna Śpiewak

The thermogravimetric method allows to carry out measurements both in isothermal conditions for a given temperature and in non-isothermal conditions at a set heating rate. The aim of the work was to compare the process of gasification of the same coal in an atmosphere of CO2 under isothermal and non-isothermal conditions. The measurements were carried out with the use of DynTHERM Thermogravimetric analyzer by Rubotherm. Char derived from Polish bituminous coal “Janina” was used as material for gasification. In case of the isothermal method the measurements were performed at three temperatures – 850 °C, 900 °C and 950 °C, while in case of the non-isothermal method for three heating rates, i.e. 3 K/min, 5 K/min and 10 K/min. Based on the results obtained, kinetics curves of conversion degree of the gasification process were developed and kinetic parameters of the gasification reaction i.e. reaction order, activation energy and pre-exponential factor were determined. The values of the kinetic parameters obtained from measurements performed in isothermal and non-isothermal conditions were compared.


Author(s):  
S. Kartik ◽  
Hemant K. Balsora ◽  
Abhishek Sharma ◽  
Anand G. Chakinala ◽  
Abhishek Asthana ◽  
...  

AbstractThermal decomposition kinetics of Polypropylene (PP) waste is extremely important with respect to valorisation of waste plastics and production of utilizable components viz. chemicals, fuel oil & gas. The present research study focuses on pyrolysis kinetics of PP waste, which is present as a fraction of municipal plastic waste through distributed activation energy model (DAEM). The decomposition kinetics for PP follows a Gaussian distribution, where the normal distribution curves were centred corresponding to activation energy of 224 kJ/mol. The standard deviation of the distribution for the PP sample was found to be 22 kJ/mol indicating its wider distribution of decomposition range. The data validation has been carried out by comparing the rate parameter and extent of conversion values calculated through DAEM model with the Thermogravimetric analysis (TGA) experiments carried out for PP at various heating rates of 5, 10, 20 and 40 °C/min.


2017 ◽  
Vol 20 (2) ◽  
pp. 52-56 ◽  
Author(s):  
Tomáš Ondro ◽  
Tomáš Húlan ◽  
Ivan Vitázek

Abstract A non-isothermal kinetic analysis of kaolinite dehydroxylation was carried out using thermogravimetric analysis on powder samples with heating rates from 1 to 30 °C・min-1 in a dynamic air atmosphere. The mechanism of the reaction, values of overall activation energy and pre-exponential factor were determined from a series of thermogravimetric experiments by the Coats- Redfern method. The results show that the dehydroxylation of kaolinite is controlled by the rate of the third-order reaction (F3) with the mean values of overall activation energy (EA) 255 kJ・mol-1 and pre-exponential factor (A) 25.56 × 1014 s-1.


Sign in / Sign up

Export Citation Format

Share Document