scholarly journals Modeling of Metalized Food Packaging Plastics Pyrolysis Kinetics Using an Independent Parallel Reactions Kinetic Model

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1763 ◽  
Author(s):  
Samy Yousef ◽  
Justas Eimontas ◽  
Nerijus Striūgas ◽  
Mohammed Ali Abdelnaby

Recently, a pyrolysis process has been adapted as an emerging technology to convert metalized food packaging plastics waste (MFPWs) into energy products with a high economic benefit. In order to upscale this technology, the knowledge of the pyrolysis kinetic of MFPWs is needed and studying these parameters using free methods is not sufficient to describe the last stages of pyrolysis. For a better understanding of MFPWs pyrolysis kinetics, independent parallel reactions (IPR) kinetic model and its modification model (MIPR) were used in the present research to describe the kinetic parameters of MFPWs pyrolysis at different heating rates (5–30 °C min−1). The IPR and MIPR models were built according to thermogravimetric (TG)-Fourier-transform infrared spectroscopy (FTIR)-gas chromatography−mass spectrometry (GC-MS) results of three different types of MFPWs (coffee, chips, and chocolate) and their mixture. The accuracy of the developed kinetic models was evaluated by comparing the conformity of the DTG experimental results to the data calculated using IPR and MIPR models. The results showed that the dependence of the pre-exponential factor on the heating rate (as in the case of MIPR model) led to better conformity results with high predictability of kinetic parameters with an average deviation of 2.35% (with an improvement of 73%, when compared to the IPR model). Additionally, the values of activation energy and pre-exponential factor were calculated using the MIPR model and estimated at 294 kJ mol−1 and 5.77 × 1017 kJ mol−1 (for the mixed MFPW sample), respectively. Finally, GC-MS results illustrated that pentane (13.8%) and 2,4-dimethyl-1-heptene isopropylcyclobutane (44.31%) represent the main compounds in the released volatile products at the maximum decomposition temperature.

2010 ◽  
Vol 660-661 ◽  
pp. 593-598 ◽  
Author(s):  
Kássia Graciele dos Santos ◽  
Taisa S. Lira ◽  
Valéria V. Murata ◽  
Marco Gianesella ◽  
Marcos A.S. Barrozo

The pyrolysis kinetics of sugarcane bagasse in nitrogen flow was studied by thermogravimetric analysis from room temperature to 1173 K at different heating rates (1.5, 3, 5, 10, 15, 20, 30 and 50 K/min). As there are three distinct devolatilization peaks in the DTG curve, each peak was associated to thermal decomposition of an individual biomass subcomponent (hemicellulose, cellulose and lignin). The kinetic model adopted was a consecutive reactions model. The kinetic parameters of the pyrolysis process, such as activation energy and pre-exponential factor, were calculated by least squares non-linear method and Scilab are used as the simulation tool. The simulated results showed a good agreement with the experimental data and the parameters found are similar to reported by the literature.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3939 ◽  
Author(s):  
Lucio Fabio Cassiano Nascimento ◽  
Fernanda Santos da Luz ◽  
Ulisses Oliveira Costa ◽  
Fábio de Oliveira Braga ◽  
Édio Pereira Lima Júnior ◽  
...  

Knowledge about the curing behavior of a thermosetting resin and its composites includes the determination of kinetic parameters and constitutes an important scientific and technological tool for industrial process optimization. In the present work, the differential scanning calorimetry (DSC) technique was used to determine several curing parameters for pure epoxy and its composite reinforced with 20 vol % mallow fibers. Analyses were performed with heating rates of 5, 7.5, and 10 °C/min, as per the ASTM E698 standard. The kinetic related parameters, that is, activation energy (E), Avrami’s pre-exponential factor (Z), and mean time to reach 50% cure (t½), were obtained for the materials, at temperatures ranging from 25 to 100 °C. Response surfaces based on the mathematical relationship between reaction time, transformed fraction, and temperature were provided for optimization purposes. The results showed that the average curing time used for the production of diglycidyl ether of bisphenol A/triethylenetetramine (DGEBA/TETA) epoxy systems or their composites reinforced with natural mallow fibers can be considerably reduced as the temperature is increased up to a certain limit.


2001 ◽  
Vol 44 (10) ◽  
pp. 333-339 ◽  
Author(s):  
P. Stolarek ◽  
S. Ledakowicz

Thermal processing of sewage sludge including drying, pyrolysis and gasification or combustion may be an alternative to other ways of utilising it. In this paper thermogravimetric analysis (TGA) was employed in the investigation of thermal decomposition of sewage sludge. The kinetic parameters of drying, pyrolysis and gasification or combustion of sewage sludge have been determined in an inert-gas (argon) and additionally some series of the sludge decomposition experiments have been carried out in air, in order to compare pyrolysis and combustion. The pyrolysis char has been gasified with carbon dioxide. A typical approach to the kinetics of thermal decomposition of a solid waste is to divide the volatile evolution into a few fractions (lumps), each of which is represented by a single first-order reaction. If these lumps are assumed to be non-interacting and evolved by independent parallel reactions the first-order kinetic parameters such as activation energy Ei and pre-exponential factor Ai can be determined from mathematical evaluation of TG or DTG curves. The object of our investigations was a municipal sludge from the two wastewater treatment plants (WTP) in Poland. The experiments have been carried out in the thermobalance Mettler-Toledo type TGA/SDTA851 LF, in the temperature range 30-1,000°C. Five different values of heating rate have been applied β = 2, 5, 10, 15 and 20 K/min. The values of Ei and Ai have been determined for all recognised lumps of gaseous products. The method employed has also revealed its usefulness for the determination of kinetic parameters for municipal sludge, that possess an undefined content. An alternative route to combustion of sewage sludge is its gasification, which significantly increases the gaseous product (pyrolytic gas + syngas). Besides pyrolysis kinetics, gasification or combustion process kinetics have also been determined.


2018 ◽  
Vol 72 (2) ◽  
pp. 99-106 ◽  
Author(s):  
Milos Radojevic ◽  
Martina Balac ◽  
Vladimir Jovanovic ◽  
Dragoslava Stojiljkovic ◽  
Nebojsa Manic

In the Republic of Serbia there are significant quantities of coffee and tire wastes that can be utilized as Solid Recovered Fuel (SRF) and used as an additional fuel for co?combustion with coal and biomass in energy production and cement industry sectors. Differences between SRF and base fuel are a cause of numerous problems in design of burners. The objective of this study was to determine the kinetic parameters for the thermochemical conversion of selected SRF using Simultaneous Thermal Analysis (STA). Samples of coffee and tire waste were used for the experimental tests. Thermal analysis was carried out in nitrogen atmosphere at three different heating rates 10, 15 and 20 K/min for each sample, while it was heated from room temperature up to 900?C. Two sample sizes x <0.25 mm and 0.25 < x <0.5 mm of each SRF were used in experiments, in order to obtain reliable Thermal Gravimetric Analysis (TGA) data for estimation of kinetic parameters for SRF pyrolysis. Experimental results were used for determination of pre-exponential factor and activation energy according to methods presented in the literature. Presented research provides valuable data of coffee and tire waste that can be used for the burners design.


Author(s):  
Hoque Md. Mozammel ◽  
Masahiro Ota

This study deals with the conversion of waste wood into solid fuel charcoal. Thermogravimetric and differential thermal analyses techniques are used to investigate the kinetics of thermochemical conversion of waste wood. The thermal degradation characteristics and the kinetic parameters (order of reaction, activation energy and pre-exponential factor) are determined at different heating rates using TG/DTA curves. The decomposition of the components could be modeled by an Arrhenius kinetic expression. The kinetic parameters are determined from the thermogravimetric data by a least square technique. The order of reaction and activation of energy vary from 0.41 to 0.52 and 10.86 to 15.10 kJ/mole respectively. Finally attempts are taken to produce charcoal from the waste wood and the charcoals are characterized in respect of yield, electrical conductivity, ESCA (electron spectroscopy for chemical analysis), XRD (x-ray diffraction) and ignition characteristics.


2014 ◽  
Vol 18 (3) ◽  
pp. 833-842 ◽  
Author(s):  
Esin Apaydin-Varol ◽  
Sevgi Polat ◽  
Ayse Putun

This study covers the thermal degradation of polycarbonate by means of Thermogravimetric Analyzer coupled with Fourier transform infrared spectrometer (TGA-FTIR). Thermogravimetric analysis of polycarbonate was carried out at four different heating rates of 5, 10, 15, and 20?C per minute from 25?C to 1000?C under nitrogen atmosphere. The results indicated that polycarbonate was decomposed in the temperature range of 425-600?C. The kinetic parameters, such as activation energy, pre-exponential factor and reaction order were determined using five different kinetic models; namely Coast-Redfern, Friedman, Kissinger, Flynn-Wall-Ozawa (FWO), and Kissinger-Akahira-Sunose (KAS). Overall decomposition reaction order was determined by Coats-Redfern method as 1.5. Average activation energy was calculated as 150.42, 230.76, 216.97, and 218.56 kJ/mol by using Kissinger, Friedman, FWO, and KAS models, respectively. Furthermore, the main gases released during the pyrolysis of polycarbonate were determined as CO2, CH4, CO, H2O, and other lower molecular weight hydrocarbons such as aldehydes, ketones and carbonyls by using thermogravimetric analyzer coupled with Fourier transform infrared spectrometer.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 702 ◽  
Author(s):  
Justas Eimontas ◽  
Nerijus Striūgas ◽  
Mohammed Ali Abdelnaby ◽  
Samy Yousef

Recently, the pyrolysis process has been adapted as a sustainable strategy to convert metallized food packaging plastics waste (MFPW) into energy products (paraffin wax, biogas, and carbon black particles) and to recover aluminum. Usually, catalysts are used in pyrolysis treatment to refine pyrolysis products and to increase their yield. In order to study the effect of a catalyst on the formulated volatile products, this work aims to study the pyrolysis behavior of MFPW in presence of catalyst, using TG-FTIR-GC–MS system. The pyrolysis experiments were conducted with ZSM-5 Zeolite catalyst with different concentrations (10, 30, and 50 wt.%) at different heating rates (5, 10, 15, 20, 25, and 30 °C/min). In addition, TG-FTIR system and GC-MS unit were used to observe and analyze the thermal and chemical degradation of the obtained volatile compounds at maximum decomposition peaks. In addition, the kinetic results of catalytic pyrolysis of ZSM-5/MFPW samples matched when model-free methods, a distributed activation energy model (DAEM), and an independent parallel reaction kinetic model (IPR) were used. The TGA-DTG results showed that addition of a catalyst did not have a significant effect on the features of the TGA-DTG curves with similar weight loss of 87–90 wt.% (without taking the weight of the catalyst into account). Meanwhile, FTIR results manifested strong presence of methane and high-intensity functional group of carboxylic acid residues, especially at high concentration of ZSM-5 and high heating rates. Likewise, GC-MS measurements showed that Benzene, Toluene, Hexane, p-Xylene, etc. compounds (main flammable liquid compounds in petroleum oil) generated catalysts exceeding 50%. Finally, pyrolysis kinetics showed that the whole activation energies of catalytic pyrolysis process of MFPW were estimated at 289 kJ/mol and 110, 350, and 174 kJ/mol for ZSM-5/MFPW samples (10, 30, and 50 wt.%, respectively), whereas DAEM and IPR approaches succeeded to simulate TGA and DTG profiles with deviations below <1.


2019 ◽  
Vol 26 (1) ◽  
pp. 175-188
Author(s):  
Paweł Stolarek ◽  
Stanisław Ledakowicz ◽  
Radosław Ślęzak

Abstract Thermogravimetry (TG) is the fast and reliable method for characterization of thermal decomposition of any material and in particular to determine the kinetics of pyrolytic decomposition of sewage sludge. Two types of sewage sludge with and without addition of lime were investigated from kinetic point of view. For TG analysis samples of selected sewage sludge were heated under the inert atmosphere of argon with constant heating rate from 303 to 1273 K; the three heating rate β = 5, 10 and 20 K/min were chosen. The iso-conversion methods of Friedman and Ozawa-Flynn-Wall were employed for analysis of TG results. As the sewage sludge decomposition is very complex process it cannot be described by a simple stoichiometric equation, therefore the so called lumping of reactions in the selected temperature ranges were used with detailed principles arising from visual analysis of DTG curve. The deconvolution of DTG curves performed according to Fraser-Suzuki asymmetric profile allowed the identification of number of lumps and their contribution to the overall mass loss. So the decomposition of sewage sludge with lime addition could be described with five groups of reactions while the one without lime by means of six lumps. The thermal decomposition of sewage sludge was assumed to proceed according to the scheme of parallel concurrent independent reactions of n-th order. The values of the apparent activation energies at different constant values of conversion degrees were determined by the iso-conversion analysis. To estimate the kinetic parameters the non-linear regression with Levenberg-Marquart optimization procedure was used. The kinetic parameters such as activation energy, pre-exponential factor, reaction order and fraction of total mass loss associated with a given reaction were determined. The impact of sewage sludge liming revealed in essential differences of pyrolysis products and pyrolysis kinetics of limed sludge and without lime one was highlighted.


Author(s):  
Milan Protic ◽  
Ana Miltojevic ◽  
Miomir Raos ◽  
Petar Đekić

In the global quest for substitution of fossil fuels, biomass is regarded as one of the most promising alternatives. Thermochemical conversion is one of the dominant biomass-to-energy processing routes with pyrolysis as one of the options that gained importance in recent years. In this paper pyrolysis experiments of cheery tree samples were performed. The objective of this research was to determine selected physical and chemical properties of cheery related to thermochemical conversion. The samples were pyrolysed in a thermogravimetric analyzer in an inert, nitrogen, atmosphere at four different heating rates 1, 2, 5 and 10 °C/min. Pyrolysis occurred, as expected, in three step: loss of moisture and light volatiles, active and passive pyrolysis. With an increase in heating rate a lateral shift of the maximum rate of weight loss for the thermal decomposition to higher temperatures was observed, as well as an increase in the amount of residual char. Moreover, kinetic studies were performed using the Kissinger method. The activation energy was calculated to be 155.26 kJ/mol, while the pre-exponential factor was 1.685×1012 min-1. Obtained results are comparable to values reported in literature. Kissinger method is straightforward and offers the possibility for fast and reliable determination of kinetic parameters.


2014 ◽  
Vol 953-954 ◽  
pp. 230-234
Author(s):  
Dong Yu Chen ◽  
Yan Qing Hu

In order to find out the appropriate kinetic model for biomass pyrolysis, pyrolysis experiments of four samples (untreated biomass, HCl-washed, 3%KCl-treated and 10% KCl-treated) of sweet sorghum bagasse were performed by Thermogravimetry (TG) separately at different heating rates. The pyrolysis data was processed by the methods of Ozawa、Coats-Redfern integration and Achar-Brindley-Sharp differential, and the kinetic parameters were calculated. The results showed that the activation energy from deduced mechanism functions is more approach to the Ozawa’s than that from tentative mechanism functions, and the deduced mechanism functions can more realistically reflect the dynamic process four samples of sweet sorghum bagasse pyrolysis.


Sign in / Sign up

Export Citation Format

Share Document