scholarly journals Extraction of Polyhydroxyalkanoates from Purple Non-Sulfur Bacteria by Non-Chlorinated Solvents

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4163
Author(s):  
Sara Filippi ◽  
Patrizia Cinelli ◽  
Andrea Mezzetta ◽  
Pietro Carlozzi ◽  
Maurizia Seggiani

In this study, non-chlorinated solvents such as cyclohexanone (CYC) and three ionic liquids, (ILs) (1-ethyl-3-methylimidazolium dimethylphosphate, [EMIM][DMP], 1-ethyl-3-methylimidazolium diethylphosphate, [EMIM][DEP] and 1-ethyl-3-methylimidazolium methylphosphite, [EMIM][MP]) were tested to extract polyhydroxyalkanoates (PHAs) from the purple non-sulfur photosynthetic bacterium (PNSB) Rhodovulumsulfidophilum DSM-1374. The photosynthetic bacterium was cultured in a new generation photobioreactor with 4 L of working volume using a lactate-rich medium. The extracted PHAs were characterized using a thermogravimetric analysis, differential scanning calorimetry, infrared spectroscopy, proton nuclear magnetic resonance and gel permeation chromatography. The most promising results were obtained with CYC at 125 °C with an extraction time of above 10 min, obtaining extraction yields higher than 95% and a highly pure poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-HV) with around 2.7 mol% of hydroxylvalerate (HV). A similar yield and purity were obtained with chloroform (CHL) at 10 °C for 24 h, which was used as the referent solvent Although the three investigated ILs at 60 °C for 4 and 24 h with biomass/IL up to 1/30 (w/w) obtained PHAs strongly contaminated by cellular membrane residues, they were not completely solubilized by the investigated ILs.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Narendran Kandaswamy ◽  
Nanthini Raveendiran

Synthesis of random biscoumarin copolyester bearing pendant 3-(trifluoromethyl)styrene was prepared by the reaction of biscoumarin monomer 3 and hydroquinone 5 with azeloyl chloride. The influence of pendant 3-(trifluoromethyl)styrene unit on the properties of copolyester such as inherent viscosity, solubility, and thermal stability was investigated and compared in detail. The inherent viscosity and polydispersity index of the copolyester were found to be 0.15 dL/g and 1.36, respectively. The chemical structure of the copolyester was investigated by Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy. The physical properties of copolyester were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), gel permeation chromatography (GPC), and X-ray diffraction (XRD) technique. Agar disc diffusion method was employed to study the antimicrobial activity of the random copolyester. In vitro anticancer activity against lung cancer (Hep-2) cell line was also investigated.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Narendran Kandaswamy ◽  
Nanthini Raveendiran

Synthesis of random copolyester bearing 4-arylidene curcumin M1 in the polymer backbone was prepared by solution polycondensation method. The influence of copolyester bearing 4-arylidene curcumin M1 unit on the properties of copolyester such as inherent viscosity, solubility, and thermal stability was investigated and studied in detail. The inherent viscosity and polydispersity index of the copolyester were found to be 0.19 dL/g and 1.38, respectively. The chemical structure of the copolyester was investigated by Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy. The physical properties of copolyester were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), gel permeation chromatography (GPC), and X-ray diffraction (XRD) technique. Agar disc diffusion method was employed to study the antimicrobial activity of the random copolyester. In vitro anticancer activity against lung cancer (Hep-2) cell line was investigated.


2013 ◽  
Vol 747 ◽  
pp. 148-152
Author(s):  
Chaichana Piyamawadee ◽  
Duangdao Aht-Ong

High molecular weight PLA was successfully synthesized by chain extension reaction of hydroxylated prepolymer using succinic anhydride as a chain extender. Hydroxylated prepolymer was prepared by direct condensation polymerization of L-lactic acid in the presence of 1,4-butanediol. Various molar ratios between hydroxylated prepolymer and succinic anhydride (i.e, 1:1, 1:2, 1:3) were investigated. The results showed that succinic anhydride can help increasing molecular weight of hydroxylated prepolymer approximately up to 47% as characterized by gel permeation chromatography (GPC) technique. Proton nuclear magnetic resonance (1H-NMR) was used to investigate structure of chain-extended PLA. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to examine thermal properties while the crystallinity was investigated by X-ray diffraction (XRD).


2012 ◽  
Vol 217-219 ◽  
pp. 652-655
Author(s):  
Nam Ju Jo ◽  
Dong Wook Kim ◽  
Tae Wun Kang ◽  
Hyun Park ◽  
In Won Lee ◽  
...  

The zinc methacrylate copolymers with various monomer compositions were prepared for investigating the effects of zinc methacrylate, 2-methoxyethyl acrylate contents on self polishing behavior. The effect of molecular weight of the self polishing copolymer(SPC) was also investigated. The characterizations of copolymers were performed by fourier transform infrared spectroscopy, proton nuclear magnetic resonance, gel permeation chromatography, and differential scanning calorimetry. The leaching rate of SPC was determined from the reduction of dry film thickness after seawater immersion in a dynamic condition. The experimental results revealed that leaching rate and mechanical property of the film could be controlled by the hydrophilic monomer composition of zinc based copolymer.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 367 ◽  
Author(s):  
Kyle Brewer ◽  
Batjargal Gundsambuu ◽  
Paula Facal Marina ◽  
Simon C. Barry ◽  
Anton Blencowe

Injectable, thermoresponsive hydrogels are promising candidates for the delivery, maintenance and controlled release of adoptive cell therapies. Therefore, there is significant interest in the development of cytocompatible and biodegradable thermoresponsive hydrogels with appropriate gelling characteristics. Towards this end, a series of thermoresponsive copolymers consisting of poly(caprolactone) (PCL), poly(ethylene glycol) (PEG) and poly(propylene glycol) (PPG) segments, with various PEG:PPG ratios, were synthesised via ring-opening polymerisation (ROP) of ε-caprolactone and epoxy-functionalised PEG and PPG derivatives. The resultant PCL–PEG–PPG copolymers were characterised via proton nuclear magnetic resonance (1H NMR) spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The thermoresponsive characteristics of the aqueous copolymer solutions at various concentrations was investigated using the inversion method. Whilst all of the copolymers displayed thermoresponsive properties, the copolymer with a ratio of 1:2 PEG:PPG exhibited an appropriate sol–gel transition (28 °C) at a relatively low concentration (10 wt%), and remained a gel at 37 °C. Furthermore, the copolymers were shown to be enzymatically degradable in the presence of lipases and could be used for the encapsulation of CD4+ T-cell lymphocytes. These results demonstrate that the thermoresponsive PCL–PEG–PPG hydrogels may be suitable for use as an adoptive cell therapy (ACT) delivery vehicle.


2016 ◽  
Vol 29 (5) ◽  
pp. 595-601 ◽  
Author(s):  
Huigao Chen ◽  
Hao Xin ◽  
Jiarong Lu ◽  
Junkun Tang ◽  
Qiaolong Yuan ◽  
...  

A novel resin, poly(dimethylsilylene-ethynylene-phenoxyphenoxyphenylene-ethynylene), was synthesized from 1,4-bis( p-ethynylphenoxy)benzene and dimethyldichlorosilane through Grignard reaction. The structures of the monomer and the resin were characterized by elemental analysis, Fourier transform infrared, proton nuclear magnetic resonance, electron ionization-mass spectrometry and gel permeation chromatography. The thermal behaviour of the resin was examined by differential scanning calorimetry. The cured resin exhibits excellent dielectric property, high glass transition temperature, good mechanical properties and high thermal stability. The flexural strength and impact strength of the cured resin were 55.0 MPa and 10.5 KJ m−2, respectively. The degradation temperature at 5% weight loss of the cured resin arrived at 549°C in nitrogen.


2021 ◽  
pp. 095400832199674
Author(s):  
Tao Guo ◽  
Yang Fan ◽  
Chang Bo ◽  
Zhang Qi ◽  
Han Tao ◽  
...  

Benzoxazine resin exhibits excellent properties and is widely used in many fields. Herein, the synthesis of a novel compound, the bis(2,4-dihydro-2 H-3-(4- N-maleimido)phenyl-1,3-benzoxazinyl)biphenyl (BMIPBB), has been reported, which was synthesized by reacting N-(4-aminophenyl)maleimide (APMI), formaldehyde, and 4,4’-dihydroxybiphenyl. 1,3,5-three(4-(maleimido)phenyl)-1,3,5-triazine (TMIPT) was formed as an intermediate during the reaction. The proton nuclear magnetic resonance (1H-NMR) and Fourier transform-infrared (FTIR) spectroscopy experiments were conducted to determine the structure of BMIPBB. BMIPBB was obtained as a reddish-brown solid in 40.1% yield. The thermal properties of BMIPBB were investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) techniques. Analysis of the DSC curves revealed that the broad peak representing the release of curing reaction heat appeared in the temperature range of 140–330°C. The peak temperature was 242.59°C and the heat of the reaction was 393.82 J/g, indicating that the rate of the curing reaction was low and the heat of the reaction was high. Analysis of the TGA results revealed that the weight loss rate was 5% at 110°C. The monomer exhibited a significant weight loss in the range of 320–500°C. The compound lost 50% of its weight at a temperature of 427°C.


2021 ◽  
Vol 22 (2) ◽  
pp. 700
Author(s):  
Young Jae Moon ◽  
Sun-Jung Yoon ◽  
Jeung-Hyun Koo ◽  
Yihyun Yoon ◽  
Hye Jun Byun ◽  
...  

Accelerating wound healing with minimized bacterial infection has become a topic of interest in the development of the new generation of tissue bio-adhesives. In this study, we fabricated a hydrogel system (MGC-g-CD-ic-TCS) consisting of triclosan (TCS)-complexed beta-cyclodextrin (β-CD)-conjugated methacrylated glycol chitosan (MGC) as an antibacterial tissue adhesive. Proton nuclear magnetic resonance (1H NMR) and differential scanning calorimetry (DSC) results showed the inclusion complex formation between MGC-g-CD and TCS. The increase of storage modulus (G’) of MGC-g-CD-ic-TCS after visible light irradiation for 200 s indicated its hydrogelation. The swollen hydrogel in aqueous solution resulted in two release behaviors of an initial burst and sustained release. Importantly, in vitro and in vivo results indicated that MGC-g-CD-ic-TCS inhibited bacterial infection and improved wound healing, suggesting its high potential application as an antibacterial tissue bio-adhesive.


Author(s):  
Georgina Alejandra Venegas-Cervera ◽  
Andrés Iván Oliva ◽  
Alejandro Avila-Ortega ◽  
José Manuel Cervantes-Uc ◽  
Leydi Maribel Carrillo-Cocom ◽  
...  

AbstractElectrospun polymers are an example of multi-functional biomaterials that improve the material-cellular interaction and aimed at enhancing wound healing. The main objective of this work is to fabricate electrospun polyurethane membranes using arginine as chain extender (PUUR) in order to test the fibroblasts affinity and adhesion on the material and the polymer toxicity. Polyurethane membranes were prepared in two steps: (i) the polyurethane synthesis, and ii) the electrospinning process. The membranes were characterized by scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy, gel permeation chromatography, and differential scanning calorimetry techniques. The evaluation of PUUR as a scaffolding biomaterial for growing and developing of cells on the material was realized by LIVE/DEAD staining. The results show that the fluorescent surface area of human fibroblasts (hFB), was greater in control dense membranes made from Tecoflex than in electrospun and dense PUUR. From SEM analysis, the electrospun membranes show relatively uniform attachment of cells with a well-spread shape, while Tecoflex dense membranes show a non-proliferating round shape, which is attributed to the fiber’s structure in electrospun membranes. The cell morphology and the cell attachment assay results reveal the well spreading of hFB cells on the surface of electrospun PUUR membranes which indicates a good response related to cell adhesion.


Recycling ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 33
Author(s):  
Laura Strobl ◽  
Thomas Diefenhardt ◽  
Martin Schlummer ◽  
Tanja Leege ◽  
Swetlana Wagner

This paper describes a study for waste of electrical and electronic equipment (WEEE) to characterise the plastic composition of different mixed plastic fractions. Most of the samples studied are currently excluded from material recycling and arise as side streams in state-of-the-art plastics recycling plants. These samples contain brominated flame retardants (BFR) or other substances of concern listed as persistent organic pollutants or in the RoHS directive. Seventeen samples, including cathode ray tube (CRT) monitors, CRT televisions, flat screens such as liquid crystal displays, small domestic appliances, and information and communication technology, were investigated using density- and dissolution-based separation processes. The total bromine and chlorine contents of the samples were determined by X-ray fluorescence spectroscopy, indicating a substantial concentration of both elements in density fractions above 1.1 g/cm3, most significantly in specific solubility classes referring to ABS and PS. This was further supported by specific flame retardant analysis. It was shown that BFR levels of both polymers can be reduced to levels below 1000 ppm by dissolution and precipitation processes enabling material recycling in compliance with current legislation. As additional target polymers PC and PC-ABS were also recycled by dissolution but did not require an elimination of BFR. Finally, physicochemical investigations of recycled materials as gel permeation chromatography, melt flow rate, and differential scanning calorimetry suggest a high purity and indicate no degradation of the technical properties of the recycled polymers.


Sign in / Sign up

Export Citation Format

Share Document