scholarly journals Material Extrusion-Based Additive Manufacturing of Poly(Lactic Acid) Antibacterial Filaments—A Case Study of Antimicrobial Properties

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4337
Author(s):  
Piotr Gruber ◽  
Viktoria Hoppe ◽  
Emilia Grochowska ◽  
Justyna Paleczny ◽  
Adam Junka ◽  
...  

In the era of the coronavirus pandemic, one of the most demanding areas was the supply of healthcare systems in essential Personal Protection Equipment (PPE), including face-shields and hands-free door openers. This need, impossible to fill by traditional manufacturing methods, was met by implementing of such emerging technologies as additive manufacturing (AM/3D printing). In this article, Poly(lactic acid) (PLA) filaments for Fused filament fabrication (FFF) technology in the context of the antibacterial properties of finished products were analyzed. The methodology included 2D radiography and scanning electron microscopy (SEM) analysis to determine the presence of antimicrobial additives in the material and their impact on such hospital pathogens as Staphylococcus aureus, Pseudomonas aeruginosa, and Clostridium difficile. The results show that not all tested materials displayed the expected antimicrobial properties after processing in FFF technology. The results showed that in the case of specific species of bacteria, the FFF samples, produced using the declared antibacterial materials, may even stimulate the microbial growth. The novelty of the results relies on methodological approach exceeding scope of ISO 22196 standard and is based on tests with three different species of bacteria in two types of media simulating common body fluids that can be found on frequently touched, nosocomial surfaces. The data presented in this article is of pivotal meaning taking under consideration the increasing interest in application of such products in the clinical setting.

Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1529 ◽  
Author(s):  
Sisi Wang ◽  
Lode Daelemans ◽  
Rudinei Fiorio ◽  
Maling Gou ◽  
Dagmar R. D’hooge ◽  
...  

Based on differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis, polarizing microscope (POM), and scanning electron microscopy (SEM) analysis, strategies to close the gap on applying conventional processing optimizations for the field of 3D printing and to specifically increase the mechanical performance of extrusion-based additive manufacturing of poly(lactic acid) (PLA) filaments by annealing and/or blending with poly(3-hydroxybutyrate) (PHB) were reported. For filament printing at 210 °C, the PLA crystallinity increased significantly upon annealing. Specifically, for 2 h of annealing at 100 °C, the fracture surface became sufficiently coarse such that the PLA notched impact strength increased significantly (15 kJ m−2). The Vicat softening temperature (VST) increased to 160 °C, starting from an annealing time of 0.5 h. Similar increases in VST were obtained by blending with PHB (20 wt.%) at a lower printing temperature of 190 °C due to crystallization control. For the blend, the strain at break increased due to the presence of a second phase, with annealing only relevant for enhancing the modulus.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2767
Author(s):  
Giada Belletti ◽  
Sara Buoso ◽  
Lucia Ricci ◽  
Alejandro Guillem-Ortiz ◽  
Alejandro Aragón-Gutiérrez ◽  
...  

A green, effective methodology for the preparation of water-based dispersions of poly(lactic acid) (PLA) for coating purposes is herein presented. The procedure consists of two steps: in the first one, an oil-in-water emulsion is obtained by mixing a solution of PLA in ethyl acetate with a water phase containing surfactant and stabilizer. Different homogenization methods as well as oil/water phase ratio, surfactant and stabilizer combinations were screened. In the second step, the quantitative evaporation of the organic provides water dispersions of PLA that are stable, at least, over several weeks at room temperature or at 4 °C. Particle size was in the 200–500 nm range, depending on the preparation conditions, as confirmed by scanning electron microscope (SEM) analysis. PLA was found not to suffer significant molecular weight degradation by gel permeation chromatography (GPC) analysis. Furthermore, two selected formulations with glass transition temperature (Tg) of 51 °C and 34 °C were tested for the preparation of PLA films by drying in PTFE capsules. In both cases, continuous films that are homogeneous by Fourier-transform infrared spectroscopy (FT-IR) and SEM observation were obtained only when drying was performed above 60 °C. The formulation with lower Tg results in films which are more flexible and transparent.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Wei Kit Chee ◽  
Nor Azowa Ibrahim ◽  
Norhazlin Zainuddin ◽  
Mohd Faizal Abd Rahman ◽  
Buong Woei Chieng

Poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) blends were prepared via melt blending technique. Glycidyl methacrylate (GMA) was added as reactive compatibilizer to improve the interfacial adhesion between immiscible phases of PLA and PCL matrices. Tensile test revealed that optimum in elongation at break of approximately 327% achieved when GMA loading was up to 3wt%. Slight drop in tensile strength and tensile modulus at optimum ratio suggested that the blends were tuned to be deformable. Flexural studies showed slight drop in flexural strength and modulus when GMA wt% increases as a result of improved flexibility by finer dispersion of PCL in PLA matrix. Besides, incorporation of GMA in the blends remarkably improved the impact strength. Highest impact strength was achieved (160% compared to pure PLA/PCL blend) when GMA loading was up to 3 wt%. SEM analysis revealed improved interfacial adhesion between PLA/PCL blends in the presence of GMA. Finer dispersion and smooth surface of the specimens were noted as GMA loading increases, indicating that addition of GMA eventually improved the interfacial compatibility of the nonmiscible blend.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 39-54 ◽  
Author(s):  
Bo Wang ◽  
Yujuan Jin ◽  
Kai’er Kang ◽  
Nan Yang ◽  
Yunxuan Weng ◽  
...  

AbstractIn this study, a type of epoxy-terminated branched polymer (ETBP) was used as an interface compati- bilizer to modify the poly lactic acid (PLA)/poly(butylene adipate-co-butylene terephthalate) (PBAT) (70/30) blends. Upon addition of ETBP, the difference in glass transition temperature between PLA and PBAT became smaller. By adding 3.0 phr of ETBP, the elongation at break of the PLA/PBAT blends was found increased from 45.8% to 272.0%; the impact strength increased from 26.2 kJ·m−2 to 45.3 kJ·m−2. In SEM analysis, it was observed that the size of the dispersed PBAT particle decreased with the increasing of ETBP content. These results indicated that the compatibility between PLA and PBAT can be effectively enhanced by using ETBP as the modifier. The modification mechanism was discussed in detail. It proposes that both physical and chemical micro-crosslinking were formed, the latter of which was confirmed by gel content analysis.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1878
Author(s):  
Marina Ramos ◽  
Elena Fortunati ◽  
Ana Beltrán ◽  
Mercedes Peltzer ◽  
Francesco Cristofaro ◽  
...  

Nano-biocomposite films based on poly (lactic acid) (PLA) were prepared by adding thymol (8 wt.%) and a commercial montmorillonite (D43B) at different concentrations (2.5 and 5 wt.%). The antioxidant, antimicrobial, and disintegration properties of all films were determined. A kinetic study was carried out to evaluate the thymol release from the polymer matrix into ethanol 10% (v/v) as food simulant. The nanostructured networks formed in binary and ternary systems were of interest in controlling the release of thymol into the food simulant. The results indicated that the diffusion of thymol through the PLA matrix was influenced by the presence of the nanoclay. Disintegration tests demonstrated that the incorporation of both additives promoted the breakdown of the polymer matrix due to the presence of the reactive hydroxyl group in the thymol structure and ammonium groups in D43B. Active films containing thymol and D43B efficiently enhanced the antioxidant activity (inhibition values higher than 77%) of the nano-biocomposites. Finally, the addition of 8 wt.% thymol and 2.5 wt.% D43B significantly increased the antibacterial activity against Escherichia coli and Staphylococcus aureus 8325-4, resulting in a clear advantage to improve the shelf-life of perishable packaged food.


2011 ◽  
Vol 205 ◽  
pp. S552-S557 ◽  
Author(s):  
D. Boonyawan ◽  
S. Sarapirom ◽  
S. Tunma ◽  
C. Chaiwong ◽  
P. Rachtanapun ◽  
...  

2021 ◽  
Author(s):  
Daniele Rigotti ◽  
Luca Fambri ◽  
Alessandro Pegoretti

Abstract Composite filaments consisting of poly(lactic acid) (PLA) and micro crystalline cellulose (MCC) were successfully used for additive manufacturing (AM) by fused filament fabrication (FFF). PLA and MCC bio-composites were obtained by direct mixing in a melt compounder; maleic anhydride (MAH) was also grafted onto PLA in reactive mixing stage to evaluate its effect on the final properties of the printed material. Filaments with various concentrations of MCC (up to a maximum content of 10 wt%) were produced with a single screw extruder and used to feed a commercial desktop FFF printer. Upon grafting of PLA with MAH, a more coherent interfacial morphology between PLA and MCC was detected by electron microscopy analysis. The thermal degradation of the PLA was unaffected by the presence of MCC and MAH. According to differential scanning calorimetry and dynamic mechanical analysis results, micro-cellulose acted as nucleating agent for PLA. In fact, the crystallization peak shifted towards lowers temperature and a synergistic effect when MCC was added to PLA grafted with MAH was observed possibly due to the increase of the chain mobility. Micro cellulose led to an increase in the stiffness of the material in both filaments and 3D printed specimen, however, a different fracture behavior was observed due to the peculiar structure of printed samples.


2021 ◽  
Vol 2027 (1) ◽  
pp. 012008
Author(s):  
R Kishore ◽  
M Vinayaga Moorthy ◽  
P.S Gokul ◽  
Mugilan ◽  
Mugundhan

2021 ◽  
Vol 22 (23) ◽  
pp. 13025
Author(s):  
Anna Masek ◽  
Stefan Cichosz ◽  
Małgorzata Piotrowska

The effects of plant-based extracts on the solar aging and antimicrobial properties of impregnated ethylene–norbornene (EN) copolymer and poly(lactic acid) (PLA) were investigated. In this study, the impregnation yield of polyolefin, lacking in active centers capable of phytochemical bonding, and polyester, abundant in active sides, was measured. Moreover, two different extracts plentiful in phytochemicals—thyme (TE) and clove (CE)—were employed in the solvent-based impregnation process. The effect of thymol and eugenol, the two main compounds embodied in the extracts, was studied as well. Interestingly, oxidation induction times (OIT) for the impregnation of EN with thyme and clove extracts were established to be, respectively, 27.7 and 39.02 min, which are higher than for thymol (18.4 min) and eugenol (21.1 min). Therefore, an aging experiment, mimicking the full spectrum of sunlight, was carried out to investigate the resistance to common radiation of materials impregnated with antioxidative substances. As expected, the experiment revealed that the natural extracts increased the shelf-life of the polymer matrix by inhibiting the degradation processes. The aging resistance was assessed based on detected changes in the materials’ behavior and structure that were examined with Fourier-transform infrared spectroscopy, contact angle measurements, color quantification, tensile tests, and hardness investigation. Such broad results of solar aging regarding materials impregnated with thyme and clove extracts have not been reported to date. Moreover, CE was found to be the most effective modifying agent for enabling material with antimicrobial activity against Escherichia coli to be obtained.


Sign in / Sign up

Export Citation Format

Share Document