scholarly journals A Review of Biopolymers’ Utility as Emulsion Stabilizers

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 127
Author(s):  
Nirmala Tamang ◽  
Pooja Shrestha ◽  
Binita Khadka ◽  
Monohar Hossain Mondal ◽  
Bidyut Saha ◽  
...  

Polysaccharides, polynucleotides, and polypeptides are basic natural polymers. They have various applications based on their properties. This review mostly discusses the application of natural polymers as emulsion stabilizers. Natural emulsion stabilizers are polymers of amino acid, nucleic acid, carbohydrate, etc., which are derived from microorganisms, bacteria, and other organic materials. Plant and animal proteins are basic sources of natural emulsion stabilizers. Pea protein-maltodextrin and lentil protein feature entrapment capacity up to 88%, (1–10% concentrated), zein proteins feature 74–89% entrapment efficiency, soy proteins in various concentrations increase dissolution, retention, and stability to the emulsion and whey proteins, egg proteins, and proteins from all other animals are applicable in membrane formation and encapsulation to stabilize emulsion/nanoemulsion. In pharmaceutical industries, phospholipids, phosphatidyl choline (PC), phosphatidyl ethanol-amine (PE), and phosphatidyl glycerol (PG)-based stabilizers are very effective as emulsion stabilizers. Lecithin (a combination of phospholipids) is used in the cosmetics and food industries. Various factors such as temperature, pH, droplets size, etc. destabilize the emulsion. Therefore, the emulsion stabilizers are used to stabilize, preserve and safely deliver the formulated drugs, also as a preservative in food and stabilizer in cosmetic products. Natural emulsion stabilizers offer great advantages because they are naturally degradable, ecologically effective, non-toxic, easily available in nature, non-carcinogenic, and not harmful to health.

Author(s):  
V. Suganya ◽  
V. Anuradha

Encapsulation is a process of enclosing the substances within an inert material which protects from environment as well as control drug release. Recently, two type of encapsulation has been performed in several research. Nanoencapsulation is the coating of various substances within another material at sizes on the nano scale. Microencapsulation is similar to nanoencapsulation aside from it involving larger particles and having been done for a greater period of time than nanoencapsulation. Encapsulation is a new technology that has wide applications in pharmaceutical industries, agrochemical, food industries and cosmetics. In this review, the difference between micro and nano encapsulation has been explained. This article gives an overview of different methods and reason for encapsulation. The advantages and disadvantages of micro and nano encapsulation technology were also clearly mentioned in this paper.


2019 ◽  
Vol 9 (01) ◽  
pp. 27-33
Author(s):  
Naveen Kumar ◽  
Sonia Pahuja ◽  
Ranjit Sharma

Humans have taken advantage of the adaptability of polymers for centuries in the form of resins, gums tars, and oils. However, it was not until the industrial revolution that the modern polymer industry began to develop. Polymers represent an important constituent of pharmaceutical dosage forms. Polymers have played vital roles in the formulation of pharmaceutical products. Polymers have been used as a major tool to manage the drug release rate from the formulations. Synthetic and natural-based polymers have found their way into the biomedical and pharmaceutical industries. Synthetic and Natural polymers can be produced with a broad range of strength, heat resistance, density, stiffness and even price. By constant research into the science and applications of polymers, they are playing an ever-increasing role in society. Diverse applications of polymers in the present pharmaceutical field are for controlled drug release. Based on solubility pharmaceutical polymers can be classified as water-soluble and water-insoluble. In general, the desirable polymer properties in pharmaceutical applications are film forming, adhesion, gelling, thickening, pH-dependent solubility and taste masking. General pharmaceutical applications of polymers in various pharmaceutical formulations are also discussed


Author(s):  
MARIA KALSOOM ◽  
FAZAL UR REHMAN ◽  
TALHA SHAFIQUE ◽  
SANWAL JUNAID ◽  
NIMRA KHALID ◽  
...  

Biotechnology is the most prominent and rapidly growing segment of the biological sciences that is making its diversified application in sustainable agriculture. Biofertilizers, biopesticides, bioherbicides, bioinsecticides, and many of the other fungal based and viral based insecticides, obtained using microorganisms, are some of the outcomes of biotechnology playing a key role in sustainable agriculture. Many of other important food products are also obtained by microbial fermentation. Different microbes are added to get the desired effect of food at the specific stages of food production process. Pharmaceutical microbiology includes the manufacturing of different pharmaceutical and medicinal products. This review article has a wide overview of microbes mainly used in agriculture, food industries, and pharmaceutical industries.


Author(s):  
Pavani S ◽  
Mounika K ◽  
Naresh K

The present study is to formulate and evaluate Acyclovir (ACV) microspheres using natural polymers like chitosan and sodium alginate. ACV is a DNA polymerase inhibitor used in treating herpes simplex virus infection and zoster varicella infections. Acyclovir is a suitable candidate for sustained-release (SR) administration as a result of its dosage regimen twice or thrice a day and relatively short plasma half-life (approximately 2 to 4 hours). Microspheres of ACV were prepared by an ionic dilution method using chitosan and sodium alginate as polymers. The prepared ACV microspheres were then subjected to FTIR, SEM, particle size, % yield, entrapment efficiency, in vitro dissolution studies and release kinetics mechanism. The FTIR spectra’s revealed that, there was no interaction between polymer and ACV. ACV microspheres were spherical in nature, which was confirmed by SEM. The particle size of microspheres was in the range of 23.8µm to 39.4µm. 72.9% drug entrapment efficiency was obtained in the formulation F3 (1:3 ratio) with a high concentration of calcium chloride (4% w/v). The in vitro performance of ACV microspheres showed sustained release depending on the polymer concentration and concentration of calcium chloride.   The release data was best fitted with zero order kinetics and Korsemeyer -Peppas release mechanism and diffusion exponent ‘n’ value of was found to be Non-Fickian.


2021 ◽  
Author(s):  
Ritu Mahajan ◽  
Abdul Selim ◽  
Neethu K M ◽  
Sandeep Sharma ◽  
Vijayakumar Shanmugam ◽  
...  

Conventional pesticide release pollutes the atmosphere and root healthiness threats. To daze its limitations, nanotechnology mediated pesticide delivery using various natural polymers have been actively investigated. However, the lack of information on what are the beneficial/non-beneficial aspects of using hybrid- and organic- nanoparticles (NP) and among the polysaccharides which are better suited concerning pesticide loading efficiency (PLE), entrapment efficiency (E.E), and sustained-pesticide-release (SPR) has prompted us to investigate this study. In this report, we systematically investigate a series of polysaccharides such as starch (S), cellulose (C), aminocellulose (AC) and sodium carboxymethylcellulose (NaCMC) coated on magnetite NP (MNP, Fe<sub>3</sub>O<sub>4</sub>) and complete organic nanocarrier systems (starch and cellulose) that have no MNP part were compared for the PLE and SPR efficiencies for chlorpyrifos (ChP) insecticide. Overall, all nanocarriers (NCs) have shown good to excellent PLE due to the smaller sized NP obtained through optimal conditions. However, among the hybrid polysaccharides studied, starch MNP (S-MNP) has shown a maximum PLE of 111 wt% in comparison with other polysaccharides (80 – 94 wt%) as well as with organic-NCs (81 – 87 wt%). The use of inorganic support does improve the PLE greatly for starch but not for cellulose derivatives. Similarly, the SPR results of S-NP showed remarkably better sustained-release-profile for ChP of 88 % in 14 days, whereas other unfunctionalized and functionalized celluloses exhibited poor release profiles of 60 – 20 % for the same period. These results indicate that the superior performance of starch might be due to the beta-1,4- & 1,6-linkages of sugar moieties leading to the branched polymers which bring more room for the pesticide to be entrapped and allow them to release in a sustainable manner. We believe that this study may help the researchers to choose the right system for designing and achieving enhanced pesticide efficiency.


2020 ◽  
Vol 7 (4) ◽  
pp. 155
Author(s):  
Andrzej Fertala

Collagens provide the building blocks for diverse tissues and organs. Furthermore, these proteins act as signaling molecules that control cell behavior during organ development, growth, and repair. Their long half-life, mechanical strength, ability to assemble into fibrils and networks, biocompatibility, and abundance from readily available discarded animal tissues make collagens an attractive material in biomedicine, drug and food industries, and cosmetic products. About three decades ago, pioneering experiments led to recombinant human collagens’ expression, thereby initiating studies on the potential use of these proteins as substitutes for the animal-derived collagens. Since then, scientists have utilized various systems to produce native-like recombinant collagens and their fragments. They also tested these collagens as materials to repair tissues, deliver drugs, and serve as therapeutics. Although many tests demonstrated that recombinant collagens perform as well as their native counterparts, the recombinant collagen technology has not yet been adopted by the biomedical, pharmaceutical, or food industry. This paper highlights recent technologies to produce and utilize recombinant collagens, and it contemplates their prospects and limitations.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Aliaa Anzian ◽  
Belal J. Muhialdin ◽  
Nameer Khairullah Mohammed ◽  
Hana Kadum ◽  
Anis Asyila Marzlan ◽  
...  

The aim of this study was to identify the bioactive compound and evaluate the antibacterial activity of torch ginger flower oil extracted using subcritical carbon dioxide. The antibacterial activity was evaluated in agar diffusion assay, while MIC and MBC were determined using the microdilution broth assay. The essential oil was subjected to metabolomics profiling using GC-MS and 1H-NMR techniques. The results demonstrated strong antibacterial activity towards Salmonella typhimurium, Staphylococcus aureus, and Escherichia coli. The MIC values were 0.0625, 0.25, and 0.25 mg/mL, and the MBC values were 0.25, 0.5, and 1 mg/mL towards S. typhimurium, S. aureus, and E. coli, respectively. A total of 33 compounds were identified using GC-MS including 15 compounds (45%) known for their antimicrobial activity. In addition, sixteen metabolites were identified using NMR analysis and 8 out of the sixteen metabolites (50%) have antibacterial activity. The extracted oil demonstrated broad range for antibacterial activity and has high potential for applications in pharmaceutical and food industries. Practical Applications. The oil extracted from the torch ginger flower was found very stable and has promising applications as antibacterial agent for food and pharmaceutical industries.


Author(s):  
Uyanga Ganbaatar ◽  
Changchun Liu

As the COVID-19 pandemic continues, people are becoming infected at an alarming rate, individuals are unknowingly spreading disease, and more lives are lost every day. There is an immediate need for a simple, rapid, early and sensitive point-of-care testing for COVID-19 disease. However, current testing approaches do not meet such need. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based detection methods have received substantial attention for nucleic acid-based molecular testing due to their simplicity, high sensitivity and specificity. This review explores the various CRISPR-based COVID-19 detection methods and related diagnostic devices. As with any emerging technology, CRISPR/Cas-based nucleic acid testing methods have several challenges that must be overcome for practical applications in clinics and hospitals. More importantly, these detection methods are not limited to COVID-19 but can be applied to detect any type of pathogen, virus, and fungi that may threaten humans, agriculture, and food industries in resource-limited settings. CRISPR/Cas-based detection methods have the potential to become simpler, more reliable, more affordable, and faster in the near future, which is highly important for achieving point-of-care diagnostics.


2021 ◽  
Author(s):  
Ritu Mahajan ◽  
Abdul Selim ◽  
Neethu K M ◽  
Sandeep Sharma ◽  
Vijayakumar Shanmugam ◽  
...  

Conventional pesticide release pollutes the atmosphere and root healthiness threats. To daze its limitations, nanotechnology mediated pesticide delivery using various natural polymers have been actively investigated. However, the lack of information on what are the beneficial/non-beneficial aspects of using hybrid- and organic- nanoparticles (NP) and among the polysaccharides which are better suited concerning pesticide loading efficiency (PLE), entrapment efficiency (E.E), and sustained-pesticide-release (SPR) has prompted us to investigate this study. In this report, we systematically investigate a series of polysaccharides such as starch (S), cellulose (C), aminocellulose (AC) and sodium carboxymethylcellulose (NaCMC) coated on magnetite NP (MNP, Fe<sub>3</sub>O<sub>4</sub>) and complete organic nanocarrier systems (starch and cellulose) that have no MNP part were compared for the PLE and SPR efficiencies for chlorpyrifos (ChP) insecticide. Overall, all nanocarriers (NCs) have shown good to excellent PLE due to the smaller sized NP obtained through optimal conditions. However, among the hybrid polysaccharides studied, starch MNP (S-MNP) has shown a maximum PLE of 111 wt% in comparison with other polysaccharides (80 – 94 wt%) as well as with organic-NCs (81 – 87 wt%). The use of inorganic support does improve the PLE greatly for starch but not for cellulose derivatives. Similarly, the SPR results of S-NP showed remarkably better sustained-release-profile for ChP of 88 % in 14 days, whereas other unfunctionalized and functionalized celluloses exhibited poor release profiles of 60 – 20 % for the same period. These results indicate that the superior performance of starch might be due to the beta-1,4- & 1,6-linkages of sugar moieties leading to the branched polymers which bring more room for the pesticide to be entrapped and allow them to release in a sustainable manner. We believe that this study may help the researchers to choose the right system for designing and achieving enhanced pesticide efficiency.


RSC Advances ◽  
2016 ◽  
Vol 6 (92) ◽  
pp. 89776-89784 ◽  
Author(s):  
Xiao-Yan Wang ◽  
Marie-Claude Heuzey

Food-grade colloidal particles or complexes made from natural polymers via noncovalent interactions can be good candidates for applications in food and non-food industries.


Sign in / Sign up

Export Citation Format

Share Document