scholarly journals Encapsulation of Saccharomyces pastorianus Residual Biomass in Calcium Alginate Matrix with Insights in Ethacridine Lactate Biosorption

Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 170
Author(s):  
Lăcrămioara Rusu ◽  
Cristina-Gabriela Grigoraș ◽  
Andrei-Ionuț Simion ◽  
Elena-Mirela Suceveanu ◽  
Alexandra-Cristina Blaga ◽  
...  

Pharmaceuticals are recognized as emerging water microcontaminants that have been reported in several aquatic environments worldwide; therefore, the elimination of these pollutants is a global challenge. This study aimed to develop a biosorbent based on Saccharomyces pastorianus residual biomass encapsulated in a calcium alginate matrix and to evaluate its biosorption performance to remove Ethacridine Lactate (EL) from aqueous solutions. Firstly, the synthesis and characterization of biosorbent has been carried out. Then, the impact of main parameters on biosorption process were investigated by batch experiments. Finally, the kinetics behavior and equilibrium isotherms were evaluated. The resulted beads have an irregular and elongated shape with about 1.89 mm ± 0.13 mm in size with a homogeneous structure. The best removal efficiency for EL of over 85% was obtained at acidic pH 2 and 25 °C for 50 mg/L initial concentration and 2 g/L biosorbent dose. The pseudo-second-order and intraparticle diffusion kinetics describe the biosorption process. The maximum calculated biosorption capacity was 21.39 mg/g similar to that recorded experimentally. The equilibrium biosorption data were a good fit for Freundlich and Dubinin–Radushkevich isotherms. Our findings reveal that the low cost and eco-friendly obtained biosorbent can be easily synthesized and suitable to remove Ethacridine Lactate from water matrices.

2016 ◽  
Vol 18 (3) ◽  
pp. 81-87 ◽  
Author(s):  
Józef Nastaj ◽  
Agata Przewłocka ◽  
Monika Rajkowska-Myśliwiec

Abstract The biosorption process of three divalent metal ions – nickel, lead and zinc- from on calcium alginate from aqueous solution was studied, in single component systems. The biosorbent were investigated by Fourier Transform Infrared Spectroscopy. The batch mode experiments of the adsorption process were carried out as a function of pH, initial metal ions concentration, sorbent dosage and contact time. The adsorption influencing parameters for the maximum removal of metal ions were optimized. The experimental data were analyzed using the Langmuir, Freundlich, Langmuir-Freundlich, Koble-Corrigan and Redlich-Peterson models. The kinetic data of biosorption process were evaluated using pseudo-first and pseudo-second order equations. The Weber and Morris model was employed to interpret the metal ions diffusion in biosorption process.


2019 ◽  
Vol 9 (1) ◽  
pp. 1-11
Author(s):  
Samia Glissi ◽  
Meriem Tarbaoui ◽  
Laila Makouki ◽  
Khadija Legrouri ◽  
Hassan Hannache ◽  
...  

In this work, some adsorbent materials were prepared from residual biomass, which constitutes a real hazard for the environment and human health. So, in order to valorize this vegetal resource, a process of transformation was studied. The residual biomass was turned into adsorbent materials under the effect of chemical activation with phosphoric acid which allows the development of a large pore in the activated materials. The optimization of the conditions for the elaboration of our adsorbents was realized by experimental design by evaluating some parameters (percentage of phosphoric acid, temperature and time of activation) and their effects on the responses (capacity of adsorption of methylene blue, adsorbent yield), these parameters were selected after a screening study. The activation of our residual biomass was effected with 60% of phosphoric acid in 225°C while 115 min. The studied biomass was characterized by different physic-chemical methods (Differential Thermal Analysis /Thermogravimetric Analysis (DTA/TGA), Scanning Electron Microscopy (SEM), Raman and X-Ray Diffraction (XRD)); the results of characterization show the presence of the excellent textural and structural properties. The application of the best adsorbent in the removal of textile dyes (methylene blue) from aqueous solutions was studied. The impact of various parameters such as contact time, pH and concentration on the removal was evaluated by batch method. The adsorption isotherms were studied using Langmuir and Freundlich isotherm models. Langmuir isotherm provided the best fit to the equilibrium data with a correlation coefficient equal to 0.998. This result shows the presence of monolayer adsorption. The experiments demonstrated that the removal of methylene blue followed the pseudo-second-order kinetic model. The correlation coefficient is consistent and equal to unity, and the experimental qe value (44.17) was agreed with the calculated qe value (45.45) of pseudo-second-order then the value of pseudo-first-order which confirm a chemisorption process. The obtained results revealed that the elaborated material is an effective adsorbent for the removal of methylene blue.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Folasegun A. Dawodu ◽  
Benjamin M. Akpan ◽  
Kovo G. Akpomie

AbstractDue to the high cost associated with the treatment of effluents containing heavy metals in the environment, the continuous untreated release of effluent containing chromium from textile industries has resulted in several adverse effects to plants, ecological systems and humans. This research therefore focused on the use of a low cost, biodegradable Heinsia crinita seed coat (HCSC) material for the biosorption of chromium(VI) from aqueous and textile contaminated effluent. The biosorbent was characterized for specific surface area, surface morphology, pH point of zero charge and surface functional groups. Operational variables influences such as biosorbent dose, pH, temperature, initial Cr(VI) ion concentration and contact time on biosorption process was tested. The optimum biosorption parameter was obtained at pH 2.0, adsorbent dosage 0.25 g and contact time of 30 min. From sorption analysis, the pseudo-second-order model best described the attenuation kinetics. Concerning biosorption equilibrium, the results suggested that the adsorption isotherm obeyed the Freundlich model. Langmuir maximum monolayer biosorption capacity of 231.7 mg/g was higher than most biosorbents for Cr(VI) ion. The thermodynamic data showed a physical, spontaneous and endothermic biosorption process. HCSC showed high percentage desorption > 90% using 0.1 M HNO3 and was efficient after three cycles of regeneration studies. The results showed HCSC biomass as a suitable candidate for abstraction of Cr(VI) ion from contaminated solution and textile effluent.


2014 ◽  
Vol 12 (1) ◽  
pp. 477-486 ◽  
Author(s):  
Abbas H. Sulaymon ◽  
Ahmed A. Mohammed ◽  
Tariq J. Al-Musawi

Abstract This study aims to evaluate the ability of abundant low-cost garden grass to remove cadmium and chromium ions from aqueous solutions. Batch biosorption studies were carried out to examine the biosorption capacity, pH value, temperature, agitation speed, and metal ions concentration. The biosorption process revealed that the garden grass was an effective biosorbent of cadmium and chromium. The maximum chromium and cadmium removal rate was 90 and 80% at pH 4, respectively. FTIR spectroscopy analysis showed that the hydroxyl, amine, and carboxyl groups were the major groups responsible for the biosorption process. The maximum biosorption capacity was 18.19 and 19.4 mg/g for cadmium and chromium, respectively. The biosorption isotherm data fitted well the Langmuir model. Kinetic data were adequately fitted by the pseudo-second-order kinetic model.


2012 ◽  
Vol 610-613 ◽  
pp. 194-197
Author(s):  
Li Ping Chen ◽  
Si Qin Dalai

With sunflower straw as low-cost biosorbent, the biosorption of methylene blue (MB) from aqueous solution was studied by batch biosorption technique. The biosorption experiments were carried out under different conditions of solution pH, sunflower straw dose, and temperature. The results showed that biosorption of MB on to sunflower straw affected remarkably by the pH value, and the maximum biosorption amount was achieved at an optimum pH of 12.0; the equilibrium biosorption amount decreased as temperature was increasing, and the biosorption process might be depicted primly by Langmuir function; It was shown that the biosorption of methylene blue could be described by the pseudo-second-order equation.


Author(s):  
Olaniyi K Yusuff ◽  
Abdulrahman A. Mukadam ◽  
Adenike M.o Abdulraheem ◽  
Aanuoluwapo Akerele

The biosorption of Cr (III) ions from aqueous solutions by groundnut husk, a low-cost biosorbent was studied on a laboratory scale batch experiments. The effects of pH, contact time, particle size, biosorbent dosage and temperature on the adsorption of Cr (III) ions were investigated. Determination of Chromium ion concentration in solution was done using Atomic Absorption Spectrophotometer (AAS). The results show that the removal mechanism is predominantly by chemisorption and it is dependent on the physical and chemical characteristics of the biosorbent material. From the initial concentration of 0.5 mM, optimum Cr (III) ions removal was obtained at pH of 4, particle size of 0.15 nm, contact time of 180 minutes and biosorbent dosage of 50 mg, with the highest biosorption efficiency of 81.15 %. The biosorption process was best described by the BET adsorption isotherm with R2 value 0.9814 indicating multiplayer adsorption. Analysis of the experimental data revealed that the biosorption of Cr (III) ions from aqueous solution by groundnut husk is a spontaneous process with a ?Go value of -24.38 kJmol-1 at 298 K and follow the pseudo second order kinetics with a rate constant of 0.0151 min-1. The results indicate that groundnut husk can be employed as a low cost alternative to commercial adsorbents in the removal of Cr (III) ions from wastewater.


2012 ◽  
Vol 66 (3) ◽  
pp. 564-572 ◽  
Author(s):  
Görkem Değirmen ◽  
Murat Kılıç ◽  
Özge Çepelioğullar ◽  
Ayşe E. Pütün

In this study, the removal of copper(II) and cadmium(II) ions from aqueous solutions by biosorption onto pine cone was studied. Variables that affect the biosorption process such as pH, biosorbent dosage, initial metal ion concentration, contact time and temperature of solution were optimized. Experimental data were fitted to Langmuir, Freundlich, Dubinin Radushkevich and Temkin isotherm models to investigate the equilibrium isotherms. Pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models were used to determine the biosorption mechanism. The thermodynamics of biosorption were studied for predicting the nature of biosorption. Experimental results showed that pine cone could be evaluated as an alternative precursor for removal of heavy metal ions from aqueous solutions, due to its high biosorption capacity, availability, and low cost.


2018 ◽  
Vol 15 (3) ◽  
pp. 567-575
Author(s):  
K.G. Akpomie ◽  
C.C. Ezeofor ◽  
S.I. Eze ◽  
C.N. Okey ◽  
P.I. Ebiem-Kenechukwu

The biosorption of Cd (II), As (III) and Pb (II) ions from solution utilizing Vigna unguiculata leaf powders (VULP) as a low cost biosorbent was studied. The influence of temperature, metal ion concentration, biosorbent dose, contact time and pH on the sequestration process was examined by batch procedure. Increase in the biosorption of the three metal ions with increased pH and biosorbent dosage was obtained in this study.Equilibrium contact time of 20, 40 and 50min was achieved for Cd(II), As (III) and Pb(II) ions and biosorption was in the order As(III)> Cd(II) >Pb(II). Isotherm analysis was performed by the application of Langmuir, Freundlich, Flory-Huggins and Scatchard models. The Langmuir model gave the best fit with maximum monolayer biosorption capacity of 109.1, 105 and 119.3 mg/g for Cd (II), Pb (II) and As (III) respectively. Scatchard model confirmed a homogenous surface of VULP and monolayer biosorption of metal ions. Pseudo second order model showed the best fit compared to pseudo first order, Elovich and Banghams kinetic models according to kinetic analysis. Thermodynamics study revealed a feasibly, spontaneous exothermic biosorption process. The result showed good potentials of VULP as suitable cheap biosorbent for attenuation of Cd (II), Pb(II) and As (III) ions from polluted wastewaters.


2019 ◽  

<p>In this study, the potential textile dye biosorption capacity of a low-cost biosorbent (P. animale) was tested as functions of pH, biosorbent type, initial dye concentration, temperature, contact time and biosorbent dosage at batch scale level. The optimal conditions are 2, dried biosorbent, 93.16 mg/L, 45 ◦C, 1440 minutes and 4 g/L for pH, biosorbent type, initial dye concentration, temperature, contact time and adsorbent dosage, respectively. Dried P. animale removed 99.66 % of Remazol Black B (RBB). The isotherm and kinetic models were analyzed for biosorption mechanism and characteristic. According to the results, Langmuir isotherm and pseudo second order kinetic models were compatible with the experimental data obtained for RBB biosorption on algal biosorbent. Also FTIR and elemental analysis were done and resulted that the functional groups on the surface of algae had significant role in biosorption process. The results of this study supported that P. animale is an effective, inexpensive and eco-friendly biosorbent for treatment of textile dye wastewater.</p>


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
José A. Fernández-López ◽  
José M. Angosto ◽  
María D. Avilés

The biosorption of hexavalent chromium from aqueous solutions byOpuntiacladodes and ectodermis from cactus fruits was investigated. Both types of biomass are considered low-cost, natural, and ecofriendly biosorbents. Batch experiments were carried out to determine Cr(VI) biosorption capacity and the efficiency of the biosorption process under different pH, initial Cr(VI) concentration, and sorbent dosage. The biosorption of Cr(VI) byOpuntiabiomass was highly pH dependent, favoring higher metal uptake at low pH. The higher biosorption capacity was exhibited at pH 2. The optimal conditions were obtained at a sorbent dosage of 1 g L−1and initial metal concentration of 10 mg L−1. Biosorption kinetic data were properly fitted with the pseudo-second-order kinetic model. The rate constant, the initial biosorption rate, and the equilibrium biosorption capacity were determined. The experimental equilibrium data obtained were analyzed using two-parameter isotherm models (Langmuir, Freundlich, and Temkin). The Langmuir maximum monolayer biosorption capacity (qmax) was 18.5 mg g−1for cladodes and 16.4 mg g−1for ectodermis. The results suggest thatOpuntiabiomass could be considered a promising low-cost biosorbent for the ecofriendly removal of Cr(VI) from aqueous systems.


Sign in / Sign up

Export Citation Format

Share Document