scholarly journals Edible Films and Coatings Formulated with Arrowroot Starch as a Non-Conventional Starch Source for Plums Packaging

2021 ◽  
Vol 2 (2) ◽  
pp. 373-386
Author(s):  
Gislaine Ferreira Nogueira ◽  
Bianca de Oliveira Leme ◽  
Gabriela Ragazzi Santana dos Santos ◽  
Juliana Viegas da Silva ◽  
Patrícia Barbosa Nascimento ◽  
...  

Increasing environmental awareness has promoted an interest in alternative strategies to common plastics obtained from fossil sources, stimulating research on the use of biodegradable and edible films/coatings obtained from renewable sources such as arrowroot starch. This research work aimed to evaluate the use of arrowroot starch on the formation of edible films and coatings. Increasing the concentration of arrowroot starch (from 1% to 5%, mass/mass) in the film produced by casting resulted in increased water vapor permeability (from 2.20 to 3.68 g mm/m2 day kPa), moisture content (3.22% to 7.95%), increased thickness (from 0.029 to 0.101 mm), and decreased solubility in water (from 22.45% to 13.89%). The films were homogeneous, transparent and manageable, with the exception of the film with 1% starch. Film-forming solutions at concentrations of 0%, 2%, and 4% (mass/mass) of arrowroot starch were prepared and applied to plums to evaluate post-harvest behavior when stored at 25 and 5 °C for 35 days. The 2% coating adhered well to the plums’ surfaces, was bright and was effective in reducing mass loss and respiratory rate, associated with storage temperature of 5 °C. The 4% coating presented an opaque and flocculated appearance.

2013 ◽  
Vol 666 ◽  
pp. 63-66
Author(s):  
Tian Zhong ◽  
Zi Xuan Lian ◽  
Zhe Wang ◽  
Yan Qing Niu ◽  
Zhong Su Ma

Bi-layer edible films based on methylcellulose (MC) was used as the film-forming matrix, and Stearic acids (SA), Oleic acid (OA) which were used as moisture barriers, were investigated. Mechanical resistance was mainly attributed to the MC matrix. The water vapor permeability (WVP) decreased when the OA proportion increased and the lowest value was obtained at the SA/OA ratio of 7:2. But when the liquid fraction continued to increase in the mixed lipids, the WVP began to show a worse performance.


2019 ◽  
Vol 20 (5) ◽  
pp. 1246 ◽  
Author(s):  
Olga Díaz ◽  
Tania Ferreiro ◽  
José Rodríguez-Otero ◽  
Ángel Cobos

The use of flours as a material for biopolymer-based film preparation has gained interest due to the fact that they are a natural mixture of compatible macromolecules and due to their low cost. Chickpea flour shows a promising composition for the development of edible films. The aim of this study was to characterize and evaluate the properties of chickpea flour films as affected by pH (7 or 10) and plasticizer concentration (1% or 3% w/v) of film-forming solutions. Water vapor permeability, solubility, color, opacity, mechanical properties, thermal stability, structural changes by Fourier transform infrared analysis, and microstructure of the films were determined. Glycerol content and pH influenced chickpea flour film properties, microstructure and structural organization; interactions were also observed. The 1% glycerol films showed lower water vapor permeability, thickness, radical scavenging capacity, elongation at break and puncture deformation, and higher dry matter content, swelling, opacity, elastic modulus, and tensile and puncture strengths than 3% glycerol films. Film-forming solutions at pH 10 produced films with higher thickness and swelling, and were greener than those from solutions at neutral pH. The changes were more intense in 1% glycerol films. Glycerol concentration and pH could be combined in order to obtain chickpea flour films with different properties according to different food packaging requirements.


Author(s):  
Rafael Augustus De Oliveira ◽  
Gislaine Ferreira Nogueira ◽  
Farayde Matta Fakhouri

This research work aimed to evaluate the physicochemical properties of arrowroot starch films plasticized with glycerol and incorporated in film-forming solution directly (D) and by sprinkling (S) with 0%, 20%, 30%, 40% (mass blackberry solids / biopolymer mass) of blackberry pulp (BL) powder and freeze dried microencapsulated blackberry pulp (ML) using mixture of gum arabic and arrowroot starch (1: 1, mass / mass). Thickness, water solubility and water vapour permeability of the films significantly increased with increasing concentration of blackberry powder. Compared to arrowroot starch film (0%), the surface of films with BL and ML powder became irregular and rough. Keywords: Lyophilization; microstructure; water solubility; water vapor permeability; packing.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 602
Author(s):  
Carmen Rodica Pop ◽  
Teodora Emilia Coldea ◽  
Liana Claudia Salanţă ◽  
Alina Lăcrămioara Nistor ◽  
Andrei Borşa ◽  
...  

Kefiran is an exopolysaccharide classified as a heteropolysaccharide comprising glucose and galactose in equimolar quantities, and it is classified as a water-soluble glucogalactan. This work aimed to investigate the effect of different extraction conditions of kefiran on the structural and physical properties of the edible films obtained. Fourier-transform infrared spectroscopy and scanning electron microscopy were performed, together with a determinations of moisture content, solubility, water vapor permeability and degree of swelling. The kefiran films presented values of the water vapor permeability between 0.93 and 4.38 × 10−11 g/m.s.Pa. These results can be attributed to the development of a more compact structure, where glycerol had no power to increase the free volume and the water vapor diffusion through their structure. The possible conformational changes in the kefiran film structure, due to the interspersing of the plasticizers and water molecules that they absorb, could be the reason for producing flexible kefiran films in the case of using glycerol as a plasticizer at 7.5% w/w. Moreover, it was observed that the extraction conditions are a significant factor in the properties of these films and their food technology applications.


2000 ◽  
Vol 9 (1) ◽  
pp. 23-35 ◽  
Author(s):  
P. TANADA-PALMU ◽  
H. HELÉN ◽  
L. HYVÖNEN

Edible films from wheat gluten were prepared with various amounts of glycerol as a plasticizer. Water vapor permeability, oxygen permeability, tensile strength and percentage elongation at break at different water activities ( aw ) were measured. Films with low amounts of glycerol had lower water vapor and oxygen permeabilities, higher tensile strength and lower elongation at break. Wheat gluten coatings reduced weight loss during two weeks of storage for cherry tomatoes and sharon fruits compared to uncoated controls. A bilayer film of wheat gluten and beeswax significantly lowered weight loss from coated cheese cubes compared to single layer coating of wheat gluten.;


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 506 ◽  
Author(s):  
Dulce C. González Sandoval ◽  
Brenda Luna Sosa ◽  
Guillermo Cristian Guadalupe Martínez-Ávila ◽  
Humberto Rodríguez Fuentes ◽  
Victor H. Avendaño Abarca ◽  
...  

The consumption of organic products has increased in recent years. One of the most important products in Mexico is nopal. Nopal’s content and properties make the formulation of edible films possible. In this study, we aimed to develop and characterize biodegradable edible films containing mucilage from Opuntia ficus-indica. The mucilage extraction yield, thickness, color, water vapor permeability, light transmission rate, film transparency, solubility, stability of dispersion, and puncture strength were measured. The use of mucilage from different cultivars affected the water vapor permeability (8.40 × 10−11 g·m−1·s−1·Pa−1 for cultivar Villanueva, 3.48 × 10−11 g·m−1·s−1·Pa−1 for Jalpa, and 1.63 × 10−11 g·m−1·s−1·Pa−1 for Copena F1). Jalpa provided the most soluble mucilage with the highest thickness (0.105 mm). Copena F1 provided the clearest film with the greatest transparency (3.81), the best yellowness index, and the highest resistance (4.44 N·mm−1). Furthermore, this film had the best light transmission rate (48.93%). The Copena F1 showed the best film formation solution viscosity. These results indicate that mucilage mixed with pectin is a potential source for the formulation of edible films.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 158
Author(s):  
Yao Dou ◽  
Liguang Zhang ◽  
Buning Zhang ◽  
Ming He ◽  
Weimei Shi ◽  
...  

The development of edible films based on the natural biopolymer feather keratin (FK) from poultry feathers is of great interest to food packaging. Edible dialdehyde carboxymethyl cellulose (DCMC) crosslinked FK films plasticized with glycerol were prepared by a casting method. The effect of DCMC crosslinking on the microstructure, light transmission, aggregate structure, tensile properties, water resistance and water vapor barrier were investigated. The results indicated the formation of both covalent and hydrogen bonding between FK and DCMC to form amorphous FK/DCMC films with good UV-barrier properties and transmittance. However, with increasing DCMC content, a decrease in tensile strength of the FK films indicated that plasticization, induced by hydrophilic properties of the DCMC, partly offset the crosslinking effect. Reduction in the moisture content, solubility and water vapor permeability indicated that DCMC crosslinking slightly reduced the moisture sensitivity of the FK films. Thus, DCMC crosslinking increased the potential viability of the FK films for food packaging applications, offering a value-added product.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1382 ◽  
Author(s):  
Gislaine Ferreira Nogueira ◽  
Farayde Matta Fakhouri ◽  
José Ignacio Velasco ◽  
Rafael Augustus de Oliveira

This research work evaluated the influence of the type of incorporation and variation in the concentration of blackberry pulp (BL) and microencapsulated blackberry pulp (ML) powders by freeze-drying on the chemical and physical properties of arrowroot starch films. Blackberry powders were added to the film-forming suspension in different concentrations, 0%, 20%, 30% and 40% (mass/mass of dry starch) and through two different techniques, directly (D) and by sprinkling (S). Scanning electron microscopy (SEM) images revealed that the incorporation of blackberry powder has rendered the surface of the film rough and irregular. Films incorporated with BL and ML powders showed an increase in thickness and water solubility and a decrease in tensile strength in comparison with the film containing 0% powder. The incorporation of blackberry BL and ML powders into films transferred colour, anthocyanins and antioxidant capacity to the resulting films. Films added with blackberry powder by sprinkling were more soluble in water and presented higher antioxidant capacity than films incorporated directly, suggesting great potential as a vehicle for releasing bioactive compounds into food.


Sign in / Sign up

Export Citation Format

Share Document