scholarly journals Green Synthesis of Silver Nanoparticles Using Bilberry and Red Currant Waste Extracts

Processes ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 193 ◽  
Author(s):  
Antonio Zuorro ◽  
Annalaura Iannone ◽  
Stefano Natali ◽  
Roberto Lavecchia

The production of silver nanoparticles (Ag-NPs) from bilberry waste (BW) and red currant waste (RCW) extracts was studied. Red fruit extracts were obtained by treating BW and RCW with aqueous ethanol (50% v/v) at 40 °C. The formation of nanoparticles was monitored spectrophotometrically by measuring the intensity of the surface plasmon resonance band (SPR) of silver. The effects of temperature (20–60 °C) and pH (8–12) on the reaction kinetics and on the properties of Ag-NPs were investigated. Characterization by XRD and dynamic light scattering (DLS) techniques showed that Ag-NPs were highly crystalline, with a face-centered cubic structure and a hydrodynamic diameter of 25–65 nm. The zeta potential was in the range of −35.6 to −20.5 mV. Nanoparticles obtained from BW were slightly smaller and more stable than those from RCW. A kinetic analysis by the initial-rate method showed that there was an optimum pH, around 11, for the production of Ag-NPs. Overall, the results obtained suggest that BW and RCW can be advantageously used as a source of reducing and stabilizing agents for the green synthesis of Ag-NPs.

2020 ◽  
Vol 20 (3) ◽  
pp. 1678-1684
Author(s):  
Jiraporn Chumpol ◽  
Sineenat Siri

Green synthesis offers an eco-friendly and low-cost approach for the synthesis of silver nanoparticles (AgNPs). Many studies have reported on the use of biomolecules, especially plant extracts, as reducing and/or stabilizing agents in place of toxic chemicals. This study reports on the use of bacterial genomic DNA as an alternative stabilizing agent for the green synthesis of AgNPs under light activation. With both increased DNA quantities and reaction times under light exposure, more stabilized AgNPs formed as indicated by the surface plasmon resonance intensities. The synthesized AgNPs were spherical with an average size of 61.36±10.15 nm as calculated using the dynamic light scattering (DLS) technique. The X-ray diffraction, selected area electron diffraction, and high resolution transmission electron microscope (TEM) analyses confirmed the formation of face-centered cubic (fcc) structured AgNPs. The produced AgNPs exhibited antibacterial activities against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, suggesting its potential application as an antibacterial agent.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Miftah Faried ◽  
Kamyar Shameli ◽  
Mikio Miyake ◽  
Abdollah Hajalilou ◽  
Ali Zamanian ◽  
...  

The synthesis of silver nanoparticles (Ag-NPs) was achieved by a simple green chemistry procedure using sodium alginate (Na-Alg) under ultrasonic radiation as a stabilizer and physical reducing agent. The effect of radiation time on the synthesis of Ag-NPs was carried out at room temperature until 720 min. The successful formation of Ag-NPs has been confirmed by UV-Vis, XRD, TEM, FESEM-EDX, zeta potential, and FT-IR analyses. The surface plasmon resonance band appeared at the range of 452–465 nm that is an evidence of formation of Ag-NPs. The XRD study showed that the particles are crystalline structure in nature, with a face-centered cubic (fcc) structure. The TEM study showed the Ag-NPs have average diameters of around 20.16–22.38 nm with spherical shape. The FESEM-EDX analysis confirmed the spherical shape of Ag-NPs on the surface of Alg and the element of Ag with the high purity. The zeta potential showed high stability of Alg/Ag-NPs especially after 720 min irradiation with value of −67.56 mV. The FT-IR spectrum confirmed that the Ag-NPs have been capped by the Alg with van der Waals interaction. The Alg/Ag-NPs showed the antibacterial activity against Gram-positive and Gram-negative bacteria. These suggest that Ag-NPs can be employed as an effective bacteria inhibitor and can be applied in medical field.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1777 ◽  
Author(s):  
Md. Mahiuddin ◽  
Prianka Saha ◽  
Bungo Ochiai

A green synthesis of silver nanoparticles (AgNPs) was conducted using the stem extract of Piper chaba, which is a plant abundantly growing in South and Southeast Asia. The synthesis was carried out at different reaction conditions, i.e., reaction temperature, concentrations of the extract and silver nitrate, reaction time, and pH. The synthesized AgNPs were characterized by visual observation, ultraviolet–visible (UV-vis) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), energy dispersive x-ray (EDX), and Fourier transform infrared (FTIR) spectroscopy. The characterization results revealed that AgNPs were uniformly dispersed and exhibited a moderate size distribution. They were mostly spherical crystals with face-centered cubic structures and an average size of 19 nm. The FTIR spectroscopy and DLS analysis indicated that the phytochemicals capping the surface of AgNPs stabilize the dispersion through anionic repulsion. The synthesized AgNPs effectively catalyzed the reduction of 4-nitrophenol (4-NP) and degradation of methylene blue (MB) in the presence of sodium borohydride.


2021 ◽  
Vol 10 (3) ◽  
pp. 16-24
Author(s):  
Sherin Monichan ◽  
P. Mosae Selvakumar ◽  
Christine Thevamithra ◽  
M. S. A. Muthukumar Nadar ◽  
Jesse Joel

Silver nanoparticles has been used since ages, even till now it is exploited in almost all areas like medicine, textiles, industries, cosmetics, purification, dying and many more. There are many approaches which are used to synthesize silver nanoparticles. However, these approaches are either harmful to the environment or very costly. Therefore, green synthesis of silver nanoparticles (AgNPs) using leaves of Filicium decipiens eco-friendly and a very reliable method to procure AgNPs. Characterization of synthesized AgNPs were then done using UV-Vis spectroscopy and fluorescence which confirmed the formation of AgNPs, scanning electron microscope (SEM)confirmed its shape to be round and X-ray diffraction (XRD) determined its crystalline nature as face centered cubic structure. Furthermore, Dynamic Light Scattering (DLS) was also done in order to know the average diameter and zeta potential of AgNPs. However, it did not show potential results due to the aggregates formed during the green synthesis of AgNPs. In addition to this, anti-microbial test against bacteria such as gram negative (Escherichia. Coli) and gram positive (Bacillus.spc) were done using well-diffusion method and also its application of antimicrobial activity was tested over fabric to understand its application in textile industries. In both the cases, AgNPs showed more efficiency in gram negative bacteria than gram- positive.


2021 ◽  
Author(s):  
Mert Saraçoğlu ◽  
Begüm Bacınoğlu ◽  
Sıddıka Mertdinç ◽  
Servet Timur

Abstract In this study, sericin extracted from Bombyx mori silk cocoons was integrated into the well-known Tollens’ method for synthesizing Ag-NPs. Sericin successfully acted as a stabilizer while silver amine complex [Ag(NH3)2]+ was reduced by maltose. As a result, silver nanoparticles with high stability are formed. Possible functional groups related to the stabilization of NPs were investigated by Fourier-transforms infrared spectroscopy (FT-IR). Ag-Ser NPs were characterized by using particle size measurements based on dynamic light scattering (DLS) and transmission electron microscopy (TEM). According to the characterization investigations, Ag-Ser NPs have characteristic (111) face-centered cubic (FFC) plane and were spherical in shape with a narrow size distribution of 20.23 ±6.25 nm. Overall, the sericin-modified Tollens’ method for synthesizing Ag-NPs offers a simple and non-toxic production method to form nanoparticles. Colloidal stability of nanoparticles displays an essential role since their enhanced nano-properties can be diminished by an increase in size due to aggregation and agglomeration. Therefore, the effect of pH on particle stability was investigated through the surface charge of Ag-Ser NPs that was measured using a Zeta-potential analyzer. Results obtained from this study may extend the applicability of silver nanoparticles in biotechnological researches and a potential synthesis route for the application of Ag-Ser NPs as aseptic and therapeutic usages.


2017 ◽  
Vol 5 (4) ◽  
pp. 523-531 ◽  
Author(s):  
Milan Poudel ◽  
Rabin Pokharel ◽  
Sudip K.C. ◽  
Suvash Chandra Awal ◽  
Rajaram Pradhananga

There is an increasing interest these days in the green route of synthesis of metal nanoparticles using plant extract, fungus and bacterial- mediated eco-friendly materials. Silver nanoparticles were synthesized using an intracellular extract of Ganoderma lucidum, a mushroom from Nepal then characterization of silver nanoparticles was performed. The Ag-NPs thus formed show surface plasmonic resonance with a maximum absorption band at 420 nm. Their crystalline nature was confirmed as a face-centered cubic structure by the XRD, Furthermore, SEM revealed that they were in the size range of 10-30 nm and were spherical in shape. The possible biomolecule involved in the reduction and stabilization of Ag-NPs were believed to be oxidized polyphenol, and carbonyl group, amino acid residue. Ag-NPs exhibit good antioxidant activity but showed low antioxidant in comparison to the fungal extract alone, which was studied using DPPH antioxidant assay. The effect of the colloidal silver nanoparticles solution against six human pathological bacteria was carried out by Disc diffusion method. The zone of maximum inhibition was seen in Bacillus subtilis (17.0 ± 0.13 mm) and least effective against Escherichia coli (10.1 ± 0.2 mm). Further, the results showed that Ag-NPs in combination with antibiotics have better antibacterial effect as compared with Ag-NPs alone. The maximum effect with a 3.2 and 5.3 fold increase was seen in Gentamicin and Streptomycin respectively providing the synergistic role of Ag-NPs. The results of antimicrobial studies indicated that the Ag-NPs are the metal of choice and can be effectively used in combination with antibiotics in order to improve their efficiency against various pathogenic microbes. Int. J. Appl. Sci. Biotechnol. Vol 5(4): 523-531


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 719 ◽  
Author(s):  
Muhammad Khan ◽  
Kamyar Shameli ◽  
Awis Sazili ◽  
Jinap Selamat ◽  
Suriya Kumari

Green synthesis of silver nanoparticles is desirable practice. It is not only the required technique for industrial and biomedical purposes but also a promising research area. The aim of this study was to synthesize green curcumin silver nanoparticles (C-Ag NPs). The synthesis of C-Ag NPs was achieved by reduction of the silver nitrate (AgNO3) in an alkaline medium. The characterizations of the prepared samples were conducted by ultraviolet visible (UV-vis) spectroscopy, powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and zeta potential (ZP) analyses. The formation of C-Ag NPs was evaluated by the dark color of the colloidal solutions and UV-vis spectra, with 445 nm as the maximum. The size of the crystalline nanoparticles, recorded as 12.6 ± 3.8nm, was confirmed by HRTEM, while the face-centered cubic (fcc) crystallographic structure was confirmed by PXRD and SAED. It is assumed that green synthesized curcumin silver nanoparticles (C-Ag NPs) can be efficiently utilized as a strong antimicrobial substance for food and meat preservation due to their homogeneous nature and small size.


2014 ◽  
Vol 32 (3) ◽  
pp. 408-413 ◽  
Author(s):  
Pandian Raja ◽  
Afidah Rahim ◽  
Ahmad Qureshi ◽  
Khalijah Awang

AbstractColloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1007
Author(s):  
Azam Ali ◽  
Mariyam Sattar ◽  
Fiaz Hussain ◽  
Muhammad Humble Khalid Tareen ◽  
Jiri Militky ◽  
...  

The versatile one-pot green synthesis of a highly concentrated and stable colloidal dispersion of silver nanoparticles (Ag NPs) was carried out using the self-assembled tannic acid without using any other hazardous chemicals. Tannic acid (Plant-based polyphenol) was used as a reducing and stabilizing agent for silver nitrate in a mild alkaline condition. The synthesized Ag NPs were characterized for their concentration, capping, size distribution, and shape. The experimental results confirmed the successful synthesis of nearly spherical and highly concentrated (2281 ppm) Ag NPs, capped with poly-tannic acid (Ag NPs-PTA). The average particle size of Ag NPs-PTA was found to be 9.90 ± 1.60 nm. The colloidal dispersion of synthesized nanoparticles was observed to be stable for more than 15 months in the ambient environment (25 °C, 65% relative humidity). The synthesized AgNPs-PTA showed an effective antimicrobial activity against Staphylococcus Aureus (ZOI 3.0 mM) and Escherichia coli (ZOI 3.5 mM). Ag NPs-PTA also exhibited enhanced catalytic properties. It reduces 4-nitrophenol into 4-aminophenol in the presence of NaBH4 with a normalized rate constant (Knor = K/m) of 615.04 mL·s−1·mg−1. For comparison, bare Ag NPs show catalytic activity with a normalized rate constant of 139.78 mL·s−1·mg−1. Furthermore, AgNPs-PTA were stable for more than 15 months under ambient conditions. The ultra-high catalytic and good antimicrobial properties can be attributed to the fine size and good aqueous stability of Ag NPs-PTA. The unique core-shell structure and ease of synthesis render the synthesized nanoparticles superior to others, with potential for large-scale applications, especially in the field of catalysis and medical.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Susanna Gevorgyan ◽  
Robin Schubert ◽  
Mkrtich Yeranosyan ◽  
Lilit Gabrielyan ◽  
Armen Trchounian ◽  
...  

AbstractThe application of green synthesis in nanotechnology is growing day by day. It’s a safe and eco-friendly alternative to conventional methods. The current research aimed to study raw royal jelly’s potential in the green synthesis of silver nanoparticles and their antibacterial activity. Royal jelly served as a reducing and oxidizing agent in the green synthesis technology of colloidal silver nanoparticles. The UV–Vis maximum absorption at ~ 430 nm and fluorescence emission peaks at ~ 487 nm confirmed the presence of Ag NPs. Morphology and structural properties of Ag NPs and the effect of ultrasound studies revealed: (i) the formation of polydispersed and spherical particles with different sizes; (ii) size reduction and homogeneity increase by ultrasound treatment. Antibacterial activity of different concentrations of green synthesized Ag NPs has been assessed on Gram-negative S. typhimurium and Gram-positive S. aureus, revealing higher sensitivity on Gram-negative bacteria.


Sign in / Sign up

Export Citation Format

Share Document