scholarly journals Experimental Study on Spent FCC Catalysts for the Catalytic Cracking Process of Waste Tires

Processes ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 335 ◽  
Author(s):  
Chuansheng Wang ◽  
Xiaolong Tian ◽  
Baishun Zhao ◽  
Lin Zhu ◽  
Shaoming Li

Research on the synergistic high-value reuse of waste tires and used catalysts in spent fluid catalytic cracking (FCC) catalysts was carried out in this study to address the serious ecological and environmental problems caused by waste tires and spent FCC catalysts. The experiment, in which a spent FCC catalyst was applied to the catalytic cracking of waste tires, fully utilized the residual activity of the spent FCC catalyst and was compared with a waste tire pyrolysis experiment. The comparative experimental results indicated that the spent FCC catalyst could improve the cracking efficiency of waste tires, increase the output of light oil in pyrolysis products, and improve the quality of pyrolysis oil. It could also be used for the conversion of sulfur compounds during cracking. The content of 2-methyl-1-propylene in catalytic cracking gas was found to be up to 65.59%, so a new method for producing high-value chemical raw materials by the catalytic cracking of waste tires with spent FCC catalysts is proposed.

1998 ◽  
Vol 38 (4-5) ◽  
pp. 211-217 ◽  
Author(s):  
D. Sun ◽  
X. Z. Li ◽  
M. Brungs ◽  
D. Trimm

Vanadium and nickel were found as major contaminants on spent FCC catalyst at levels of 3518 ppm and 3225 ppm, respectively. XPS results indicated that vanadium and nickel were in oxide form on spent FCC catalysts. Leaching tests (TCLP) showed that vanadium from spent FCC catalysts poses an environmental problem if disposed by landfill. It was found that encapsulation treatment with up to 60 wt % spent FCC catalyst in Portland cement, is an effective means of stabilization. The strength of standard specimens containing catalyst was much lower than that of standard specimens made with same weight percentage of sand.


2019 ◽  
Vol 9 (24) ◽  
pp. 6977-6992 ◽  
Author(s):  
Qandeel Almas ◽  
Muhammad Awais Naeem ◽  
Maria Auxiliadora S. Baldanza ◽  
Jessica Solomon ◽  
Jeffery C. Kenvin ◽  
...  

Transformations of an industrial zeolite-based fluid catalytic cracking (FCC) catalyst and its coke deposits during regeneration following FCC reactions of a representative refinery stream are investigated.


2018 ◽  
Vol 42 (9) ◽  
pp. 2983-2996 ◽  
Author(s):  
Chawannat Jaroenkhasemmeesuk ◽  
Maria Elena Diego ◽  
Nakorn Tippayawong ◽  
Derek B. Ingham ◽  
Mohammed Pourkashanian

RSC Advances ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 6515-6525 ◽  
Author(s):  
Xiaopeng Chen ◽  
Lu Ren ◽  
Muhammad Yaseen ◽  
Linlin Wang ◽  
Jiezhen Liang ◽  
...  

A Ni-based catalyst supported over a spent fluid catalytic cracking (FCC) catalyst was prepared by a wet impregnation method.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2732
Author(s):  
Baishun Zhao ◽  
Chuansheng Wang ◽  
Huiguang Bian

Spent fluid catalytic cracking catalysts (FCC catalysts) produced by the petrochemical industry are considered to be environmentally hazardous waste, and precious metals and heavy metals deposited on the surface make them difficult to treat. Even so, these catalysts retain some of their activity. The pyrolysis of waste tires is considered to be one of the most effective ways to solve the fossil fuel resource crisis, and this study attempts to catalyze the pyrolysis of waste tires using spent catalysts to increase the value of both types of waste. FCC catalysts reduced the activation energy (E) of waste tire pyrolysis. When the catalyst dosage was 30 wt.%, the E of tread rubber decreased from 238.87 kJ/mol to 181.24 kJ/mol, which was a 19.94% reduction. The E of the inner liner decreased from 288.03 kJ/mol to 209.12 kJ/mol, a 27.4% reduction. The spent catalyst was more effective in reducing the E and solid yield of the inner liner made of synthetic rubber. It should be emphasized that an appropriate increase in the heating rate can fully exert the selectivity of the catalyst. The catalyst could also be effectively used twice, and the optimum ratio of catalyst/waste tires was about 1/4.5. Compared with specially prepared catalysts, it is more cost-effective to use such wastes as a catalyst for waste tire pyrolysis.


Author(s):  
Iker Torre ◽  
Jose M. Arandes ◽  
Pedro Castano ◽  
Miren Azkoiti ◽  
Javier Bilbao ◽  
...  

Catalytic cracking of waste plastics is an interesting option for selectively recovering raw materials or for obtaining fuels. In this paper, a new recycling strategy is proposed, which consists of upgrading the waxes obtained by flash pyrolysis of polyolefins in a FCC (Fluidized Catalytic Cracking) unit. The waxes have been obtained by flash pyrolysis of polypropylene at 500 ºC and they have been dissolved (20 wt% wax) in the vacuum gasoil (VGO) of a FCC unit. The runs have been carried out in a CREC-UWO Riser Simulator Reactor (atmospheric pressure; 500-550 ºC; C/O = 5.5; contact times, 3-12 s). A commercial catalyst and a hybrid one (containing HZSM-5 zeolite) have been used. The cracking of the mixture leads to higher yield of gasoline than in the cracking of VGO with a higher content of olefins. The results of the effect of the operating conditions (temperature and contact time) are qualitatively similar to those corresponding to standard feed. Consequently, no difficulties inherent to the presence of waxes in the feed are expected in the treatment of mixtures at industrial conditions. The presence of HZSM-5 zeolite in the catalyst causes a significant increase in the amount of LPG (especially C3-C4 olefins), at the expense of a decrease in the gasoline fraction, whose RON is 1-2 points higher than that corresponding to the commercial catalyst. The gasoline obtained also has a higher content of olefins (especially C5-C7) and benzene at the expense of a decrease in the amount of C6-C10 i-paraffins.


2021 ◽  
Vol 3 (1) ◽  
pp. 1-5
Author(s):  
Ella Melyna

Polystyrene foam atau yang lebih dikenal styrofoam banyak digunakan untuk kemasan, bahan kerajinan, dekorasi, bahan bangunan, dan sebagainya. Namun penggunaan polystyrene foam untuk kemasan masih menimbulkan beberapa kontroversi. Beberapa pandangan negatif muncul mengenai penggunaan polystyrene foam seperti menyebabkan masalah kesehatan dan lingkungan. Menurut aspek lingkungan, polystyrene foam merupakan material yang sulit terurai secara alami oleh alam. Penanganan sampah polystyrene foam yang sebatas pembuangan saja akan membebani alam dalam penguraiannya. Oleh karena itu kegiatan pengelolaan sampah polystyrene foam perlu dilakukan. Salah satu metode pengelolaan sampah polystyrene foam untuk dijadikan suatu produk yang lebih berguna dan bermanfaat bagi masyarakat pada masa yang akan datang adalah mengkonversi sampah polystyrene foam menjadi bahan bakar. Bagaimanapun juga dilihat dari bahan dasarnya sampah polystyrene foam berpotensi mempunyai nilai ekonomis sebagai sumber bahan baku jika diolah dengan cara yang tepat yaitu akan menghasilkan hidrokarbon sebagai bahan dasar energi. Konversi sampah polystyrene foam menjadi bahan bakar adalah dengan cara perengkahan sampah polystyrene foam menggunakan katalis (catalytic cracking) yang dijalankan pada suhu lebih rendah daripada thermal cracking. Pada penelitian ini, sampah polystyrene foam direngkah menggunakan katalis H-Zeolit pada suhu 360oC. Hasil perengkahan sampah polystyrene foam dianalisa menggunakan alat GC-MS. Hasil perengkahan sampah polystyrene foam pada suhu 360oC dengan katalis H-Zeolit menghasilkan 85,52% fraksi gasoline dan 7,4% fraksi kerosin dan diesel dengan komposisi fraksi gasoline 100% golongan aromatik. Kandungan senyawa aromatik yang tinggi dalam gasoline bersifat karsinogen, sebagai pembentuk deposit dan penyumbang emisi gas buang berbahaya. Referensi : [1]      Miskudin Taufik, “Teluk Jakarta Jadi Sarang Sampah Plastik,” 2019. https://itjen.kemdikbud.go.id/public/post/detail/teluk-jakarta-jadi-sarang-sampah-plastik (accessed Apr. 15, 2021). [2]      K. H. Lee, D. H. Shin, and Y. H. Seo, “Liquid-phase catalytic degradation of mixtures of waste high-density polyethylene and polystyrene over spent FCC catalyst. Effect of mixing proportions of reactants,” Polym. Degrad. Stab., vol. 84, no. 1, pp. 123–127, Apr. 2004, doi: 10.1016/j.polymdegradstab.2003.09.019. [3]      Adrian, “Depolimerisasi Katalitik Sampah Plastik menjadi BBM menggunakan Limbah Katalis RFCC Pertamina UP-VI Balongan,” 2013. [4]      Nurfathiyahalfi, “Bensin dan Bilangan Oktan.docx - Bensin dan Bilangan Oktan Bensin adalah salah satu jenis bahan bakar minyak yang dimaksudkan untuk kendaraan bermotor | Course Hero,” 2019. https://www.coursehero.com/file/45124238/Bensin-dan-Bilangan-Oktandocx/ (accessed Apr. 15, 2021). [5]      Ashadi, “Knocking Archives - Kimia itu Mudah,” 2012. http://ashadisasongko.staff.ipb.ac.id/tag/knocking/ (accessed Apr. 15, 2021). [6]      T. H. Soerawidjaja, “Bahan-Bahan Bakar Hidrokarbon Utama : Bensin, Solar, dan Avtur,” 2014. [7]      P. Ghosh, K. J. Hickey, and S. B. Jaffe, “Development of a detailed gasoline composition-based octane model,” Ind. Eng. Chem. Res., vol. 45, no. 1, pp. 337–345, 2006, doi: 10.1021/ie050811h. [8]      Anjar, “Efek Samping Sering Ganti Oktan BBM - Garasi.id,” 2020. https://garasi.id/artikel/ganti-oktan-bbm/59af7a6ce7ed0a12e93bfeec (accessed Apr. 15, 2021).


2021 ◽  
Vol 11 (1) ◽  
pp. 80-88
Author(s):  
Huu Thinh Tran ◽  
Nguyen Le-Phuc ◽  
Nhat Huy Nguyen ◽  
Tri Van Tran ◽  
Thien Thanh Phan ◽  
...  

Waste Cooking Oil (WCO) can be a alternative for petroleum-based fuel. In this work, green biofuel was produced via cracking process of high acid value (AV) waste cooking oils (WCOs) over spent fluid catalytic cracking (SFCC) catalyst collected from Binh Son Refireny. The influences of temperature (450 – 520°C), catalyst-to-WCO ratio (1.5 – 3.5), and acid value (6 - 22 mgKOH/g) have been examined. At 520°C, WCOs can be converted to liquid fuels with the near zero AV (AV 0.5 mgKOH/g) which is independent of AV of WCOs. In all cases, the total yield of profitable products, gasoline-diesel-LPG, reaches 85 wt%, with only 5 - 7 wt% of coke yield. This study demonstrated the simultaneous utilization of multiple hazardous substances, SFCC catalyst and WCOs, as low-cost raw materials for biofuel production.


Sign in / Sign up

Export Citation Format

Share Document