scholarly journals Review of Anaerobic Digestion Modeling and Optimization Using Nature-Inspired Techniques

Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 953 ◽  
Author(s):  
Anjali Ramachandran ◽  
Rabee Rustum ◽  
Adebayo J. Adeloye

Although it is a well-researched topic, the complexity, time for process stabilization, and economic factors related to anaerobic digestion call for simulation of the process offline with the help of computer models. Nature-inspired techniques are a recently developed branch of artificial intelligence wherein knowledge is transferred from natural systems to engineered systems. For soft computing applications, nature-inspired techniques have several advantages, including scope for parallel computing, dynamic behavior, and self-organization. This paper presents a comprehensive review of such techniques and their application in anaerobic digestion modeling. We compiled and synthetized the literature on the applications of nature-inspired techniques applied to anaerobic digestion. These techniques provide a balance between diversity and speed of arrival at the optimal solution, which has stimulated their use in anaerobic digestion modeling.

2021 ◽  
pp. 115695
Author(s):  
Muzammil Khan ◽  
Muhammad Taqi Mehran ◽  
Zeeshan Ul Haq ◽  
Zahid Ullah ◽  
Salman Raza Naqvi

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Masoud Haghbin ◽  
Ahmad Sharafati ◽  
Davide Motta ◽  
Nadhir Al-Ansari ◽  
Mohamadreza Hosseinian Moghadam Noghani

AbstractThe application of soft computing (SC) models for predicting environmental variables is widely gaining popularity, because of their capability to describe complex non-linear processes. The sea surface temperature (SST) is a key quantity in the analysis of sea and ocean systems, due to its relation with water quality, organisms, and hydrological events such as droughts and floods. This paper provides a comprehensive review of the SC model applications for estimating SST over the last two decades. Types of model (based on artificial neural networks, fuzzy logic, or other SC techniques), input variables, data sources, and performance indices are discussed. Existing trends of research in this field are identified, and possible directions for future investigation are suggested.


Author(s):  
Jawad Rasheed ◽  
Akhtar Jamil ◽  
Alaa Ali Hameed ◽  
Fadi Al-Turjman ◽  
Ahmad Rasheed

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Abu Quwsar Ohi ◽  
M. F. Mridha ◽  
Muhammad Mostafa Monowar ◽  
Md. Abdul Hamid

AbstractPandemic defines the global outbreak of a disease having a high transmission rate. The impact of a pandemic situation can be lessened by restricting the movement of the mass. However, one of its concomitant circumstances is an economic crisis. In this article, we demonstrate what actions an agent (trained using reinforcement learning) may take in different possible scenarios of a pandemic depending on the spread of disease and economic factors. To train the agent, we design a virtual pandemic scenario closely related to the present COVID-19 crisis. Then, we apply reinforcement learning, a branch of artificial intelligence, that deals with how an individual (human/machine) should interact on an environment (real/virtual) to achieve the cherished goal. Finally, we demonstrate what optimal actions the agent perform to reduce the spread of disease while considering the economic factors. In our experiment, we let the agent find an optimal solution without providing any prior knowledge. After training, we observed that the agent places a long length lockdown to reduce the first surge of a disease. Furthermore, the agent places a combination of cyclic lockdowns and short length lockdowns to halt the resurgence of the disease. Analyzing the agent’s performed actions, we discover that the agent decides movement restrictions not only based on the number of the infectious population but also considering the reproduction rate of the disease. The estimation and policy of the agent may improve the human-strategy of placing lockdown so that an economic crisis may be avoided while mitigating an infectious disease.


2014 ◽  
Vol 17 (03n04) ◽  
pp. 1450016 ◽  
Author(s):  
V. I. YUKALOV ◽  
D. SORNETTE

The idea is advanced that self-organization in complex systems can be treated as decision making (as it is performed by humans) and, vice versa, decision making is nothing but a kind of self-organization in the decision maker nervous systems. A mathematical formulation is suggested based on the definition of probabilities of system states, whose particular cases characterize the probabilities of structures, patterns, scenarios, or prospects. In this general framework, it is shown that the mathematical structures of self-organization and of decision making are identical. This makes it clear how self-organization can be seen as an endogenous decision making process and, reciprocally, decision making occurs via an endogenous self-organization. The approach is illustrated by phase transitions in large statistical systems, crossovers in small statistical systems, evolutions and revolutions in social and biological systems, structural self-organization in dynamical systems, and by the probabilistic formulation of classical and behavioral decision theories. In all these cases, self-organization is described as the process of evaluating the probabilities of macroscopic states or prospects in the search for a state with the largest probability. The general way of deriving the probability measure for classical systems is the principle of minimal information, that is, the conditional entropy maximization under given constraints. Behavioral biases of decision makers can be characterized in the same way as analogous to quantum fluctuations in natural systems.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amit Sood ◽  
Rajendra Kumar Sharma ◽  
Amit Kumar Bhardwaj

PurposeThe purpose of this paper is to provide a comprehensive review on the academic journey of artificial intelligence (AI) in agriculture and to highlight the challenges and opportunities in adopting AI-based advancement in agricultural systems and processes.Design/methodology/approachThe authors conducted a bibliometric analysis of the extant literature on AI in agriculture to understand the status of development in this domain. Further, the authors proposed a framework based on two popular theories, namely, diffusion of innovation (DOI) and the unified theory of acceptance and use of technology (UTAUT), to identify the factors influencing the adoption of AI in agriculture.FindingsFour factors were identified, i.e. institutional factors, market factors, technology factors and stakeholder perception, which influence adopting AI in agriculture. Further, the authors indicated challenges under environmental, operational, technological, economical and social categories with opportunities in this area of research and business.Research limitations/implicationsThe proposed conceptual model needs empirical validation across countries or states to understand the effectiveness and relevance.Practical implicationsPractitioners and researchers can use these inputs to develop technology and business solutions with specific design elements to gain benefit of this technology at larger scale for increasing agriculture production.Social implicationsThis paper brings new developed methods and practices in agriculture for betterment of society.Originality/valueThis paper provides a comprehensive review of extant literature and presents a theoretical framework for researchers to further examine the interaction of independent variables responsible for adoption of AI in agriculture.Peer reviewThe peer review history for this article is available at: https://publons.com/publon/10.1108/OIR-10-2020-0448


2021 ◽  
Author(s):  
Oluwasegun Cornelious Omobolanle ◽  
Oluwatoyin Olakunle Akinsete

Abstract Accurate prediction of gas compressibility factor is essential for the evaluation of gas reserves, custody transfer and design of surface equipment. Gas compressibility factor (Z) also known as gas deviation factor can be evaluated by experimental measurement, equation of state and empirical correlation. However, these methods have been known to be expensive, complex and of limited accuracy owing to the varying operating conditions and the presence of non-hydrocarbon components in the gas stream. Recently, newer correlations with extensive application over wider range of operating conditions and crude mixtures have been developed. Also, artificial intelligence is now being deployed in the evaluation of gas compressibility factor. There is therefore a need for a holistic understanding of gas compressibility factor vis-a-vis the cause-effect relations of deviation. This paper presents a critical review of current understanding and recent efforts in the estimation of gas deviation factor.


2017 ◽  
Vol 26 (3) ◽  
pp. 433-437
Author(s):  
Mark Dougherty

AbstractForgetting is an oft-forgotten art. Many artificial intelligence (AI) systems deliver good performance when first implemented; however, as the contextual environment changes, they become out of date and their performance degrades. Learning new knowledge is part of the solution, but forgetting outdated facts and information is a vital part of the process of renewal. However, forgetting proves to be a surprisingly difficult concept to either understand or implement. Much of AI is based on analogies with natural systems, and although all of us have plenty of experiences with having forgotten something, as yet we have only an incomplete picture of how this process occurs in the brain. A recent judgment by the European Court concerns the “right to be forgotten” by web index services such as Google. This has made debate and research into the concept of forgetting very urgent. Given the rapid growth in requests for pages to be forgotten, it is clear that the process will have to be automated and that intelligent systems of forgetting are required in order to meet this challenge.


2018 ◽  
Author(s):  
Bryan C. Daniels ◽  
William S. Ryu ◽  
Ilya Nemenman

AbstractThe roundworm C. elegans exhibits robust escape behavior in response to rapidly rising temperature. The behavior lasts for a few seconds, shows history dependence, involves both sensory and motor systems, and is too complicated to model mechanistically using currently available knowledge. Instead we model the process phenomenologically, and we use the Sir Isaac dynamical inference platform to infer the model in a fully automated fashion directly from experimental data. The inferred model requires incorporation of an unobserved dynamical variable, and is biologically interpretable. The model makes accurate predictions about the dynamics of the worm behavior, and it can be used to characterize the functional logic of the dynamical system underlying the escape response. This work illustrates the power of modern artificial intelligence to aid in discovery of accurate and interpretable models of complex natural systems.


Sign in / Sign up

Export Citation Format

Share Document