scholarly journals Alexandrian Laurel for Biodiesel Production and its Biodiesel Blends on Performance, Emission and Combustion Characteristics in Common-Rail Diesel Engine

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1141
Author(s):  
Yew Heng Teoh ◽  
Heoy Geok How ◽  
Thanh Danh Le ◽  
Huu Tho Nguyen

A two-step transesterification process was employed in the biodiesel production from non-edible Alexandrian Laurel. The key physicochemical properties of the Alexandrian Laurel biodiesel (ALB), diesel and blends of both fuels were compared and analyzed. The effects of blending biodiesel (ALB) and petroleum diesel on engine performance, combustion and exhaust emissions were investigated in a turbocharged, high-pressure common-rail diesel engine under six different speed operations and at full load conditions. The test fuels comprised a conventional diesel fuel and four different fuel blends of ALB. The results showed relatively close physicochemical properties of ALB and its blends when compared with petroleum diesel. However, the use of ALB-blended fuel resulted in penalties engine brake power, brake specific fuel consumption (BSFC) despite slightly improved brake thermal efficiency (BTE). Brake specific nitrogen oxide (BSNOx) was found worsened with higher ALB content in the blends. Nonetheless, consistent improvements in brake specific carbon monoxide (BSCO), brake specific carbon dioxide (BSCO2), and smoke were noticed when ALB blends were used. Additionally, ALB blends contributed to reduction in peak combustion pressure, peak heat release rate (HRR) and combustion duration. In general, the findings suggest satisfactory operation with ALB biodiesel-diesel blends in an unmodified diesel engine.

2013 ◽  
Vol 42 (1) ◽  
pp. 38-46 ◽  
Author(s):  
M. Loganathan ◽  
A. Anbarasu ◽  
A. Velmurugan

In this study, Biodiesel -Dimethyl Ether (BDE) and Biodiesel Ethanol (BE) were tested in a 4-cylinderdirect-injection diesel engine to investigate the performance and emission characteristics of the engine underfive engine loads at the maximum torque. The engine speed was maintained at 1500 rpm. Here the jatropha oilis used as a non edible oil to produce the biodiesel. The ethanol and dimethyl ether is used as an additive toenhance the engine combustion. The BDE 5 (biodiesel 95% and dimethyl ether 5%) , BDE 10 (biodiesel 90%and dimethyl ether 10%) BDE 15(biodiesel 85% and dimethyl ether 15%) BE5 (biodiesel 95% and ethanol 5%),BE10 (biodiesel 90% and ethanol 10%) and BE15 (biodiesel 85% and ethanol 15%) were tested in the engine.The results indicate that when compared with neat jatropha, the engine performance increased and emissionlevel decreased with adding the ethanol and diethyl ether with methyl ester of jatropha oil. In comparison withneat jatropha, the BDE5 and BE15 blends have higher brake thermal efficiency (BTE) of 12% and 13%respectively. The experimental results showed that the CO, HC emission is decreased and NOx emission isincreased for higher blends of additives. The brakes specific fuel consumption (BSFC) decreased for BDE5 andBE5 compared to other combination of fuel.DOI: http://dx.doi.org/10.3329/jme.v42i1.15941 


2019 ◽  
Author(s):  
Chem Int

Biodiesel produced by transesterification process from vegetable oils or animal fats is viewed as a promising renewable energy source. Now a day’s diminishing of petroleum reserves in the ground and increasing environmental pollution prevention and regulations have made searching for renewable oxygenated energy sources from biomasses. Biodiesel is non-toxic, renewable, biodegradable, environmentally benign, energy efficient and diesel substituent fuel used in diesel engine which contributes minimal amount of global warming gases such as CO, CO2, SO2, NOX, unburned hydrocarbons, and particulate matters. The chemical composition of the biodiesel was examined by help of GC-MS and five fatty acid methyl esters such as methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linoleneate were identified. The variables that affect the amount of biodiesel such as methanol/oil molar ratio, mass weight of catalyst and temperature were studied. In addition to this the physicochemical properties of the biodiesel such as (density, kinematic viscosity, iodine value high heating value, flash point, acidic value, saponification value, carbon residue, peroxide value and ester content) were determined and its corresponding values were 87 Kg/m3, 5.63 Mm2/s, 39.56 g I/100g oil, 42.22 MJ/Kg, 132oC, 0.12 mgKOH/g, 209.72 mgKOH/g, 0.04%wt, 12.63 meq/kg, and 92.67 wt% respectively. The results of the present study showed that all physicochemical properties lie within the ASTM and EN biodiesel standards. Therefore, mango seed oil methyl ester could be used as an alternative to diesel engine.


2021 ◽  
Vol 13 (14) ◽  
pp. 7688
Author(s):  
Asif Afzal ◽  
Manzoore Elahi M. Soudagar ◽  
Ali Belhocine ◽  
Mohammed Kareemullah ◽  
Nazia Hossain ◽  
...  

In this study, engine performance on thermal factors for different biodiesels has been studied and compared with diesel fuel. Biodiesels were produced from Pongamia pinnata (PP), Calophyllum inophyllum (CI), waste cooking oil (WCO), and acid oil. Depending on their free fatty acid content, they were subjected to the transesterification process to produce biodiesel. The main characterizations of density, calorific range, cloud, pour, flash and fire point followed by the viscosity of obtained biodiesels were conducted and compared with mineral diesel. The characterization results presented benefits near to standard diesel fuel. Then the proposed diesel engine was analyzed using four blends of higher concentrations of B50, B65, B80, and B100 to better substitute fuel for mineral diesel. For each blend, different biodiesels were compared, and the relative best performance of the biodiesel is concluded. This diesel engine was tested in terms of BSFC (brake-specific fuel consumption), BTE (brake thermal efficiency), and EGT (exhaust gas temperature) calculated with the obtained results. The B50 blend of acid oil provided the highest BTE compared to other biodiesels at all loads while B50 blend of WCO provided the lowest BSFC compared to other biodiesels, and B50 blends of all biodiesels provided a minimum % of the increase in EGT compared to diesel.


Author(s):  
F. Daneshvar ◽  
N. Jahani ◽  
M. B. Shafii

In this experimental study, a four stroke diesel engine was conducted to investigate the effect of adding water-based ferrofluid to diesel fuel on engine performance. To our knowledge, Magnetic nanoparticles had not been used before. To this end, emulsified diesel fuels of 0, 0.4, and 0.8 water-based ferrofluid/Diesel ratios by volume were used as fuel. The ferrofluid used in this study was a handmade water-based ferrofluid prepared by the authors. The results show that adding water-based ferrofluid to diesel fuel has a perceptible effect on engine performance, increasing the brake thermal efficiency relatively up to 12%, and decreasing the brake specific fuel consumption relatively up to 11% as compared to diesel fuel. In addition, the results indicate that increasing ferrofluid concentration will magnify the results. Furthermore, it was found that magnetic nanoparticles can be collected at the engine exhaust using magnetic bar.


2014 ◽  
Vol 31 (2) ◽  
pp. 90 ◽  
Author(s):  
S Ismail ◽  
S. A Abu ◽  
R Rezaur ◽  
H Sinin

In this study, the optimum biodiesel conversion from crude castor oil to castor biodiesel (CB) through transesterification method was investigated. The base catalyzed transesterification under different reactant proportion such as the molar ratio of alcohol to oil and mass ratio of catalyst to oil was studied for optimum production of castor biodiesel. The optimum condition for base catalyzed transesterification of castor oil was determined to be 1:4.5 of oil to methanol ratio and 0.005:1 of potassium hydroxide to oil ratio. The fuel properties of the produced CB such as the calorific value, flash point and density were analyzed and compared to conventional diesel. Diesel engine performance and emission test on different CB blends proved that CB was suitable to be used as diesel blends. CB was also proved to have lower emission compared to conventional diesel.


Sign in / Sign up

Export Citation Format

Share Document