Block Treatment of Multi-Layer Wafers for the Development of a Numerical Model of a 300mm Batch Heat Treatment Furnace

2006 ◽  
Vol 15-17 ◽  
pp. 537-542
Author(s):  
Eun Yi Ko ◽  
Kyung Woo Yi

Of all the processing stages for wafers, interior temperature distribution in thermal treatment furnaces has a great influence on wafer properties. Therefore, internal temperature distribution is a key factor for operating a furnace. However, it is practically impossible to directly measure temperatures within the furnace, and consequently the need for a reliable numerical model to analyze temperature distribution is becoming increasingly urgent. Exact modeling of the processing is very difficult because the structure of the furnace used for thermal treatment is very complex, with large numbers of Si wafers stacked within. Therefore, simplified modeling is necessary. The modeling strategy of the present study is to reduce the radiation calculation domain and simplify the model by replacing the wafer stack region with a single block. It is necessary to determine the vertical and horizontal effective thermal conductivities of the block to reflect radiation heat transfer between wafers. In this study, calculations were performed through numerical experimentation, using r k as the heat transfer coefficient in the direction of the radius, and v k for the vertical direction. Using these calculated property values, the temperature distribution within a 300mm thermal treatment furnace can be obtained.

Author(s):  
Shigeki Hirasawa ◽  
Hiroyuki Ishibashi ◽  
Kazuhisa Kurashige ◽  
Akihiro Gunji

Temperature distributions and thermal stress distributions in a semi-transparent GSO crystal during Czochralski (CZ) single crystal growth were numerically investigated by thermal radiation heat transfer analysis and anisotropy stress analysis. As GSO has special optical properties, such as semi-transparency at a wavelength shorter than 4.5 μm, thermal radiation heat transfer was calculated by the Monte Carlo method. These calculations showed that thermal stress is caused by the radial temperature distribution on the outside of the upper part of the crystal. To reduce this temperature distribution, the following three manufacturing conditions were found to be effective: use a sharp taper angle of the crystal, install a lid to the top of the insulator, and install a ring around the tapered part of the crystal.


Author(s):  
Chaolei Zhang ◽  
Yongsheng Lian

Air circulation and temperature distribution inside a domestic refrigerator chamber are two important factors in refrigerator design. They are critical for food quality control and energy saving and are affected by natural/forced convection, radiation and layout of the stored food. Knowledge about the actual air flow and temperature distributions inside a refrigerator is required to improve temperature homogeneity and reduce energy consumption. In present work we numerically study the air circulation and the heat transfer phenomena in a domestic frost-free refrigerator. The inner compartment, the evaporator and the outside thermal insulation foam are considered. The conjugate heat transfer problem is studied by solving the unsteady laminar Navier-Stokes equations using a finite volume method. The Boussinesq approximation is used to model the natural convection. The discrete ordinate method is adopted to take into account the radiation heat transfer between the cold back evaporator and warm surfaces to further understand the impact of radiation. The accuracy of the numerical methods is verified through grid sensitivity analysis and comparison with available numerical and experimental data. Comparisons are made with and without radiation. Our simulations show that radiation significantly changes the temperature distribution and air circulation pattern. The effects of shelf and food stored on the temperature distribution and air circulation are also studied by comparing three configurations: empty refrigerator, empty refrigerator with shelves and loaded refrigerator with food.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7939
Author(s):  
Eduardo Cano-Pleite ◽  
Andrés Barrado ◽  
Néstor Garcia-Hernando ◽  
Emilio Olías ◽  
Antonio Soria-Verdugo

The present work evaluates, both experimentally and numerically, the heat transfer characteristics of a 5 kW three-phase transformer built from laminated steel sheets. The transformer is operated at different powers, and its temperature distribution is monitored using 108 thermocouples. The experimental measurements are used firstly to determine the heat dissipated at the core and the windings of the transformer. This information is used as an input for a finite element numerical model, which evaluates the heat transfer characteristics of the transformer. The model proposed in this work simply solves the diffusion equation inside the transformer, accounting for the anisotropic thermal conductivity of the different components of the transformer, together with well-known correlations at its boundaries. The results reveal that the proposed numerical model can correctly reproduce the maximum temperature, the temperature distribution, and the time-evolution of the temperature at specific points of the transformer measured during the experimental campaign. These results are of great use for the subsequent development of transformers of the same type in lab-scale or industrial-scale size and reveal the applicability of simplified numerical models to accurately predict the heat transfer characteristics of this kind of transformers.


2019 ◽  
Vol 97 (10) ◽  
pp. 1140-1146 ◽  
Author(s):  
D. Kaisheva ◽  
V. Angelov ◽  
P. Petrov

This work presents a numerical model of the temperature distribution during electron beam welding, performed by circular and elliptical beam oscillation. The numerical calculations have been done using Green’s functions. A method of finding the dependence between the source power and the weld’s depth is proposed. We present the calculated temperature distribution in electron beam welded aluminium alloy AMg6 with circular and elliptical oscillating beam for different technological parameters. The experimental shape of the weld and the calculated one show a good correspondence.


2014 ◽  
Vol 10 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Daming Fan ◽  
Chunxiang Li ◽  
Yi Li ◽  
Wei Chen ◽  
Jianxin Zhao ◽  
...  

Abstract The purpose of this study was to develop a numerical model to predict the temperature distribution in cylindrically shaped cooked rice samples during microwave reheating and to give impetus to a uniform microwave-heating design. Cylindrically shaped instant rice was reheated by continuous microwave application, and the sample temperature was measured to determine the internal temperature profile which resulted in a desired uniformity of temperature observed using the non-uniformity temperature evaluation. A finite difference method was used to predict the temperature distribution of the cylindrical rice during microwave reheating and applying Lambert’s law to calculate the microwave power absorption in a large sample of cylindrically shaped instant rice. In order to solve the numerical model of heat transfer, the thermal and dielectric properties of instant rice were measured with respect to temperature. Our results showed that the temperature had a significant effect on the specific heat and dielectric loss of rice, while the thermal conductivity and dielectric constant were unaffected. The numerically predicted temperature distributions were in good agreement with the measured ones of instant rice.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 256-265
Author(s):  
Pei Yuan ◽  
Qinghui Zeng ◽  
Zhenglin Lei ◽  
Yixiao Wu ◽  
Yanli Lu ◽  
...  

Abstract This work focuses on the heat transfer and flow characteristics with the different placement of the multi-deck display cabinet and tries to optimize the placement position of refrigerated display cabinet. First, the temperature distribution in a refrigerated display cabinet was experimentally investigated. The result showed that the food temperature in front is 3.6–4.8°C higher than back row of the same layer, and temperature fluctuation of 0.3–0.7°C less than the back row. Then, a three-dimensional numerical model of the display cabinet was established, and the k–ε model is employed to compare and analyze the heat transfer and air curtain characteristics. The results show that the placement methods have great influence on the performance of the display cabinet. The face-to-back placement method can acquire a better food refrigeration performance, and the food temperature of the face-to-back placement method is 0.3–0.5°C lower than that of the face-to-face placement method.


2021 ◽  
Vol 1035 ◽  
pp. 833-839
Author(s):  
Chao Gao ◽  
Min Luo ◽  
Da Quan Li ◽  
Song Chen ◽  
Jian Feng ◽  
...  

The mould temperature distribution has a great influence on the semi-solid diecasting. In the present study the temperature distribution of a plane-shaped mould was investigated by using the method of numerical simulation and experiment. The results showed that the preheating mould temperature field was affected by three important simulation parameters, the heat transfer coefficient hoil between the heat transfer oil and the mould, the heat transfer coefficient hair between the mould and the air, and the heat transfer coefficient hcontact between the mould core and the mould frame. The simulation results showed that (1) with the increase of hoil, the overall mould temperature imcreased; (2) with the increase of hair, the overall mould temperature decreased, while the surface temperature gradient of mould frame grad T-f and the temperature difference between the mould core and the mould frame ∆T increased; (3) With the increase of hcontact, ∆T decreased and the temperature of mould frame increased. When the heat oil temperature Toil=290°C, the heat transfer coefficients were optimized as hoil=500Wm-2K-1, hair=7Wm-2K-1, and hcontact=1000Wm-2K-1 according to the experimental results. The average temperature difference between the simulation result and the experimental result was 3.45°C, and the average relative error was 1.73%.


Author(s):  
Shigeki Hirasawa ◽  
Shigenao Maruyama

A three-dimensional radiation-heat-transfer analysis and a convection-heat-transfer analysis are combined in order to determine the temperature distribution in a rotating wafer in a cylindrical lamp heating apparatus for rapid thermal processing. The calculated results show that the temperature variation in the wafer increases 1.4 K by the effect of natural convection, when inlet gas velocity is 0.1 m/s during 1273 K steady-state heating of the non-rotating wafer. The effect of gas convection on the temperature variations in the wafer can be minimized when the wafer is rotating in an axisymmetric apparatus and the heating rates of the lamps are optimally controlled.


Sign in / Sign up

Export Citation Format

Share Document