scholarly journals Metagenomic Analysis of Suansun, a Traditional Chinese Unsalted Fermented Food

Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1669
Author(s):  
Yaping Hu ◽  
Xiaodong Chen ◽  
Jie Zhou ◽  
Wenxuan Jing ◽  
Qirong Guo

Suansun, made from fresh bamboo shoots fermented without salt, is a traditional food in China’s southern region and is popular for its nutritious and unique flavor. To comprehensively understand the microbial species and characteristics of suansun, Illumina HiSeq metagenomic sequencing technology was used to sequence suansun’s fermentation broth obtained from six traditional producing areas in southern China, and the microbial community structure, diversity, and functional genes were analyzed. A total of 8 phyla, 16 classes, 30 orders, 63 families, 92 genera, and 156 species of microorganisms were identified in the suansun samples, with Lactiplantibacillus predominating, accounting for up to 81% of the species, among which 12 species, including Lactiplantibacillus plantarum, were the main species. A total of 12,751 unigenes were annotated to 385 metabolic pathway classes, of which 2927 unigenes were involved in carbohydrate metabolism. Lactiplantibacillus fermentum, Lactiplantibacillus plantarum, and Lactiplantibacillus brucei were involved in the metabolism of most nutrients and flavor substances in suansun. Overall, these results provide insights into the suansun microbiota and shed light on the fermentation processes carried out by complex microbial communities.

2021 ◽  
Vol 14 (11) ◽  
Author(s):  
Yong-Zhi Lun ◽  
Wei Qiu ◽  
Wenqi Zhao ◽  
Hua Lin ◽  
Mintao Zhong ◽  
...  

Background: At present, there is no report that the intestinal flora of pregnant women with mild thalassemia is different from that of healthy pregnant women. Objectives: This study compared the composition and changes of the intestinal flora of pregnant women with mild thalassemia to those of healthy pregnant women using metagenomic sequencing technology and evaluated the potential microecological risk for pregnant women and the fetus. Methods: The present study was carried out on 14 mild thalassemia pregnant women with similar backgrounds in the Affiliated Hospital of Putian University, Fujian, China. In the same period, 6 healthy pregnant women were selected as the control group. The genomic deoxyribonucleic acid was extracted from the sable stool samples of pregnant women. Illumina HiSeq sequencing technology was adopted after library preparation. Prodigal software (ver 2.6.3, Salmon software (ver 1.6.0, and Kraken software (ver 2) were used to analyze the sequence data. Moreover, analysis of variance and Duncan’s multiple-comparison test or Wilcoxon rank-sum test were used as statistical methods. Results: The characteristics of the intestinal flora of pregnant women with mild thalassemia differed significantly from those of healthy pregnant women, showing an increase in some conditionally pathogenic bacteria (e.g., Prevotella stercorea rose and Escherichia coli) and a decrease in some probiotic bacteria, which might affect pregnant women and cause physiological function damage to their offspring by changing metabolic pathways; however, further validation is needed. Conclusions: The diversity and composition of intestinal flora in pregnant women with mild thalassemia vary significantly from those in healthy pregnant women, especially at the genus and species levels, representing more profound alterations in intestinal microecology.


Nutrients ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 67 ◽  
Author(s):  
Zenghao Yan ◽  
Hao Wu ◽  
Hongliang Yao ◽  
Wenjun Pan ◽  
Minmin Su ◽  
...  

Rotundic acid (RA) is a major triterpene constituent in the barks of Ilex rotunda Thunb, which have been widely used to make herbal tea for health care in southern China. RA has a variety of bioactivities such as anti-inflammation and lipid-lowering effect. However, little is known about the effects and mechanisms of RA on metabolic disturbance in type 2 diabetes (T2D) and its effect on gut microbiota. A T2D rat model induced by high fat diet (HFD) feeding and low-dose streptozotocin (STZ) injection was employed and RA showed multipronged effects on T2D and its complications, including improving glucolipid metabolism, lowering blood pressure, protecting against cardiovascular and hepatorenal injuries, and alleviating oxidative stress and inflammation. Furthermore, 16s rRNA gene sequencing was carried out on an Illumina HiSeq 2500 platform and RA treatment could restore the gut microbial dysbiosis in T2D rats to a certain extent. RA treatment significantly enhanced the richness and diversity of gut microbiota. At the genus level, beneficial or commensal bacteria Prevotella, Ruminococcus, Leuconostoc and Streptococcus were significantly increased by RA treatment, while RA-treated rats had a lower abundance of opportunistic pathogen Klebsiella and Proteus. Spearman’s correlation analysis showed that the abundances of these bacteria were strongly correlated with various biochemical parameters, suggesting that the improvement of gut microbiota might help to prevent or attenuate T2D and its complication. In conclusion, our findings support RA as a nutraceutical agent or plant foods rich in this compound might be helpful for the alleviation of T2D and its complications through improving gut microbiota.


2018 ◽  
Vol 108 (11) ◽  
pp. 1224-1236 ◽  
Author(s):  
Zheng Zheng ◽  
Jianchi Chen ◽  
Xiaoling Deng

Citrus huanglongbing (HLB) is a highly destructive disease currently threatening citrus production worldwide. In China, the disease is exclusively associated with ‘Candidatus Liberibacter asiaticus’, a nonculturable proteobacterium. HLB was observed in Guangdong of China over a hundred years ago. Researchers and citrus growers have been battling with the disease through vigorous research and have exercised various control practices. Much of the early work was not well known outside China. This review is intended to fill in gaps of historical information by reviewing selected literature records. Along the way, the HLB system within southern China was evaluated. Emphases were on comparison of symptomatology, evolution of etiology, control practices, and impacts of using next-generation sequencing technology for ‘Ca. L. asiaticus’ research and detection.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 818 ◽  
Author(s):  
Chen ◽  
Mao ◽  
Huang ◽  
Fang

Cyclocarya paliurus (Batal.) Iljinskaja, a unique species growing in southern China, is a multi-function tree species with medicinal, healthcare, material, and ornamental values. So far, sexual reproduction is the main method for extensive cultivation of C. paliurus plantations, but this is limited by low seed plumpness resulted from the character of heterodichogamy. Phenological observations have revealed the asynchronism of flower development in this species. However, its molecular mechanism remains largely unknown. To reveal molecular mechanism of heterodichogamy in C. paliurus, transcriptome of female (F) and male (M) buds from two mating types (protandry, PA; protogyny, PG) at bud break stage were sequenced using Illumina Hiseq 4000 platform. The expression patterns of both 32 genes related to flowering and 58 differentially expressed transcription factors (DETFs) selected from 6 families were divided four groups (PG-F, PG-M, PA-F, and PA-M) into two categories: first flowers (PG-F and PA-M) and later flowers (PA-F and PG-M). The results indicated that genes related to plant hormones (IAA, ABA, and GA) synthesis and response, glucose metabolism, and transcription factors (especially in MIKC family) played significant roles in regulating asynchronism of male and female flowers in the same mating type. The expression of DETFs showed two patterns. One contained DETFs up-regulated in first flowers in comparison to later flowers, and the other was the reverse. Nine genes related to flowering were selected for qRT-PCR to confirm the accuracy of RNA-seq, and generally, the RPKM values of these genes were consistent with the result of qRT-PCR. The results of this work could improve our understanding in asynchronism of floral development within one mating type in C. paliurus at transcriptional level, as well as lay a foundation for further study in heterodichogamous plants.


2017 ◽  
Vol 56 (2) ◽  
Author(s):  
Jie Liu ◽  
Mathieu Almeida ◽  
Furqan Kabir ◽  
Sadia Shakoor ◽  
Shahida Qureshi ◽  
...  

ABSTRACTThe underestimation ofShigellaspecies as a cause of childhood diarrhea disease has become increasingly apparent with quantitative PCR (qPCR)-based diagnostic methods versus culture. We sought to confirm qPCR-based detection ofShigellavia a metagenomics approach. Three groups of samples were selected from diarrheal cases from the Global Enteric Multicenter Study: nineShigellaculture-positive and qPCR-positive (culture+qPCR+) samples, nine culture-negative but qPCR-positive (culture−qPCR+) samples, and nine culture-negative and qPCR-negative (culture−qPCR−) samples. Fecal DNA was sequenced using paired-end Illumina HiSeq, whereby 3.26 × 108± 5.6 × 107high-quality reads were generated for each sample. We used Kraken software to compare the read counts specific to “Shigella” among the three groups. The proportions ofShigella-specific nonhuman sequence reads between culture+qPCR+(0.65 ± 0.42%) and culture−qPCR+(0.55 ± 0.31%) samples were similar (Mann-Whitney U test,P= 0.627) and distinct from the culture−qPCR−group (0.17 ± 0.15%,P< 0.05). The read counts of sequences previously targeted byShigella/enteroinvasiveEscherichia coli(EIEC) qPCR assays, namely,ipaH,virA,virG,ial,ShET2, andipaH3, were also similar between the culture+qPCR+and culture−qPCR+groups and distinct from the culture−qPCR−groups (P< 0.001). Kraken performed well versus other methods: its precision and recall ofShigellawere excellent at the genus level but variable at the species level. In summary, metagenomic sequencing indicates thatShigella/EIEC qPCR-positive samples are similar to those ofShigellaculture-positive samples inShigellasequence composition, thus supporting qPCR as an accurate method for detectingShigella.


2020 ◽  
Author(s):  
John Leech ◽  
Raul Cabrera-Rubio ◽  
Aaron M Walsh ◽  
Guerrino Macori ◽  
Calum J Walsh ◽  
...  

AbstractFermented foods have been the focus of ever greater interest as a consequence of purported health benefits. Indeed, it has been suggested that the consumption of these foods that help to address the negative consequences of ‘industrialization’ of the human gut microbiota in Western society. However, as the mechanisms via which the microbes in fermented foods improve health are not understood, it is necessary to develop an understanding of the composition and functionality of the fermented food microbiota to better harness desirable traits. Here we considerably expand the understanding of fermented food microbiomes by employing shotgun metagenomic sequencing to provide a comprehensive insight into the microbial composition, diversity and functional potential (including antimicrobial resistance, carbohydrate-degrading and health-associated gene content) of a diverse range of 58 fermented foods from artisanal producers from around the Globe. Food type, i.e., dairy-, sugar- or brine-type fermented foods, was to be the primary driver of microbial composition, with dairy foods found to have the lowest microbial diversity. From the combined dataset, 127 high quality metagenome-assembled genomes (MAGs), including 10 MAGs representing putatively novel species of Acetobacter, Acidisphaera, Gluconobacter, Lactobacillus, Leuconostoc and Rouxiella, were generated. Potential health promoting attributes were more common in fermented foods than non-fermented equivalents, with waterkefirs, sauerkrauts and kvasses containing the greatest numbers of potentially health-associated gene clusters (PHAGCs). Ultimately, this study provides the most comprehensive insight into the microbiomes of fermented foods to date, and yields novel information regarding their relative health-promoting potential.ImportanceFermented foods are regaining popularity in Western society due in part to an appreciation of the potential for fermented food microbiota to positively impact on health. Many previous studies have studied fermented microbiota using classical culture-based microbiological methods, older molecular techniques or, where deeper analyses have been performed, have involved a relatively small number of one specific food type. Here, we have used a state-of-the-art shotgun metagenomic approach to investigate 58 different fermented foods of different type and origin. Through this analysis, we were able to identify the differences in the microbiota across these foods, the factors that drove their microbial composition, and the relative potential functional benefits of these microbes. The information provided here will provide significant opportunities for the further optimisation of fermented food production and the harnessing of their health promoting potential.


2021 ◽  
Vol 2 (3) ◽  
pp. 4014-4028
Author(s):  
Chenghao Du

The novel coronavirus disease 2019 (COVID‐19), originally identified in December 2019 Wuhan, China, has propagated to worldwide pandemic, causing many cases of death and morbidity. Since the development of COVID-19 vaccines is still under experimental stages without public access, different types of testing and detection ensuring rapid and accurate results are urgently required to prevent delaying isolation of infected patients. The traditional diagnostic and analytical methods of COVID-19 relied heavily on nucleic acid and antibody-antigen methods but are subject to assembly bias, restricted by reading length, showed some false positive/negative results and had a long turnaround time. Hence, three styles of nanopore sequencing techniques as complementary tools for COVID-19 diagnosis and analysis are introduced. The long-read nanopore sequencing technology has been adopted in metagenomic and pathological studies of virosphere including SARS-CoV-2 recently by either metagenomically, directly or indirectly sequencing the viral genomic RNA of SARS-CoV-2 in real-time to detect infected specimens for early isolation and treatment, to investigate the transmission and evolutionary routes of SARS-CoV-2 as well as its pathogenicity and epidemiology. In this article, the Nanopore-Based Metagenomic Sequencing, Direct RNA Nanopore Sequencing (DRS), and Nanopore Targeted Sequencing (NTS) become the main focus of the novel COVID-19 detecting analytical methods in sequencing platforms, which are discussed in comparison with other traditional and popular diagnostic methods. Finally, different types of nanopore sequencing platforms that are developed by Oxford Nanopore Technologies (ONT) due to various purposes and demands in viral genomic research are briefly discussed.


2020 ◽  
Author(s):  
Ruud Raijmakers ◽  
Megan E. Roerink ◽  
Anne F.M. Jansen ◽  
Stephan P. Keijmel ◽  
Ranko Gacesa ◽  
...  

Abstract Background: Q fever fatigue syndrome (QFS) is characterised by a state of prolonged fatigue that is seen in 20% of acute Q fever infections and has major health-related consequences. The molecular mechanisms underlying QFS are largely unclear. In order to better understand its pathogenesis, we applied a multi-omics approach to study the patterns of the gut microbiome, blood metabolome, and inflammatory proteome of QFS patients, and compared these with those of chronic fatigue syndrome (CFS) patients and healthy controls (HC). Methods: The study population consisted of 31 QFS patients, 50 CFS patients, and 72 HC. All subjects were matched for age, gender, and general geographical region (South-East part of the Netherlands). The gut microbiome composition was assessed by Metagenomic sequencing using the Illumina HiSeq platform. A total of 92 circulating inflammatory markers were measured using Proximity Extension Essay and 1607 metabolic features were assessed with a high-throughput non-targeted metabolomics approach. Results: Inflammatory markers, including 4E-BP1 (P = 9.60-16 and 1.41-7) and MMP-1 (P = 7.09-9 and 3.51-9), are significantly more expressed in both QFS and CFS patients compared to HC. Blood metabolite profiles show significant differences when comparing QFS (319 metabolites) and CFS (441 metabolites) patients to HC, and are significantly enriched in pathways like sphingolipid (P = 0.0256 and 0.0033) metabolism. When comparing QFS to CFS patients, almost no significant differences in metabolome were found. Comparison of microbiome taxonomy of QFS and CFS patients with that of HC, shows both in- and decreases in abundancies in Bacteroidetes (with emphasis on Bacteroides and Alistiples spp.), and Firmicutes and Actinobacteria (with emphasis on Ruminococcus and Bifidobacterium spp.). When we compare QFS patients to CFS patients, there is a striking resemblance and hardly any significant differences in microbiome taxonomy are found.Conclusions: We show that QFS and CFS patients are similar across three different omics layers and 4E-BP1 and MMP-1 have the potential to distinguish QFS and CFS patients from HC.


2020 ◽  
Author(s):  
Jiakuo Yan ◽  
Xiaoyang Wu ◽  
Jun Chen ◽  
Yao Chen ◽  
Honghai Zhang

Abstract Sable (Martes zibellina), a member of family Mustelidae, order Carnivora, is primarily distributed in the cold northern zone of Eurasia. The purpose of this study was to explore the intestinal flora of the sable by metagenomic library-based techniques. Libraries were sequenced on an Illumina HiSeq 4000 instrument. The effective sequencing data of each sample was above 6,000 M, and the ratio of clean reads to raw reads was over 98%. The total ORF length was approximately 603,031, equivalent to 347.36 Mbp. We investigated gene functions with the KEGG database and identified 7,140 KEGG ortholog (KO) groups comprising 129,788 genes across all of the samples. We selected a subset of genes with the highest abundances to construct cluster heat maps. From the results of the KEGG metabolic pathway annotations, we acquired information on gene functions, as represented by the categories of metabolism, environmental information processing, genetic information processing, cellular processes and organismal systems. We then investigated gene function with the CAZy database and identified functional carbohydrate hydrolases corresponding to genes in the intestinal microorganisms of sable. This finding is consistent with the fact that the sable is adapted to cold environments and requires a large amount of energy to maintain its metabolic activity. We also investigated gene functions with the eggNOG database; the main functions of genes included gene duplication, recombination and repair, transport and metabolism of amino acids, and transport and metabolism of carbohydrates. In this study, we attempted to identify the complex structure of the microbial population of sable based on metagenomic sequencing methods, which use whole metagenomic data, and to map the obtained sequences to known genes or pathways in existing databases, such as CAZy, KEGG, and eggNOG. We then explored the genetic composition and functional diversity of the microbial community based on the mapped functional categories.


Sign in / Sign up

Export Citation Format

Share Document