scholarly journals Influence of Moulding Pressure on the Burst Pressure of Reverse-Acting Rupture Discs

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1775
Author(s):  
Lili Liu ◽  
Chenxing Yuan ◽  
Wei Li ◽  
Beibei Li ◽  
Xiumei Liu

Rupture discs, also called bursting discs, are widely used in pressure vessels, pressure equipment, and pressure piping in process industries, such as nuclear power, fire protection, and petrochemical industries. To explore the relationship between the burst pressure of reverse-acting rupture discs and their production, two common manufacturing methods, air pressure moulding and hydraulic moulding, were compared in this study. Reverse-acting rupture discs that complied with the form recommended by API 520-2014 were prepared with four release diameters, and burst pressure tests were carried out. These results showed an obvious negative correlation between the forming pressure of rupture discs and their actual burst pressure for all experimental samples. Further study showed that the main reason for this correlation was a reduction in thickness at the top of the rupture disc caused by large plastic deformation during compression moulding. To explore the relationship between the thickness reduction effect and moulding method, this study defined the “relative ratio of thickness reduction” and concluded that the effect of decreasing the thickness of the rupture disc was more obvious for rupture disc substrates with less flexural rigidity. The above conclusions have important significance for guiding the control of the burst pressure of rupture discs.

Author(s):  
R. Adibi-Asl

Piping systems in process industries and nuclear power plants include straight pipe runs and various fittings such as elbows, miter bends etc. Elbows and bends in piping systems provide additional flexibility to the piping system along with performing the primary function of changing the direction of fluid flow. Distinctive geometry of these toroidal shell components result in a structural behavior different from straight pipe. Hence, it would be useful to predict the behavior of these components with acceptable accuracy for design purposes. Analytical expressions are derived for stresses set up during loading and unloading in a toroidal shell subjected to internal pressure. Residual stresses in the component are also evaluated. The proposed solutions are then compared with three-dimensional finite element analysis at different locations including intrados, extrados and flanks.


Author(s):  
Mark Kirk ◽  
Masato Yamamoto ◽  
Marjorie Erickson

Abstract The toughness requirements for the ferritic steels used to construct the primary pressure boundary of a nuclear power plant include both transition temperature metrics as well as upper-shelf metrics. These separate specifications for transition and upper shelf toughness find their origins in decisions made during the 1970s and 1980s, a time when there was much less empirical and theoretical knowledge concerning the relationship between these quantities. Currently, significant evidence exists to demonstrate a systematic relationship between transition and upper shelf toughness metrics for RPV-grade steels and weldments (e.g., the equations in draft Code Case N-830-1, empirical correlation between Charpy transition temperature and upper shelf metrics, etc.). This paper explores these relationships and demonstrates that, in many cases, the joint specification of transition temperature and upper shelf toughness values is redundant and, therefore, unnecessary.


2021 ◽  
pp. 1-18
Author(s):  
Ilina Cenevska

Abstract This case comment explores the relationship between two intertwined objectives – ensuring security of electricity supply and environmental protection – in the context of the judgment of the Court of Justice of the European Union in Inter-Environnement Wallonie ASBL and Bond Beter Leefmilieu Vlaanderen ASBL v. Conseil des ministres. The analysis focuses on the application of the Environmental Impact Assessment Directive and the Habitats Directive to the facts of the case, which concerns the extension by a ten-year period of the operation of two Belgian nuclear power stations (Doel 1 and Doel 2) as part of a national energy policy strategy to ensure the security of Belgium's electricity supply. The case comment also considers the legal and practical implications that arise as a result of employing the ‘security of electricity supply’ exemption to enable derogation from the requirements of the aforementioned Directives in circumstances where a Member State considers the security of its electricity supply to be under threat.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1264
Author(s):  
Meng Zeng ◽  
Lihang Liu ◽  
Fangyi Zhou ◽  
Yigui Xiao

Many studies have found that FDI can reduce the pollutant emissions of host countries. At the same time, the intensity of environmental regulation would affect the emission reduction effect of FDI in the host country. This study aims to reveal the internal mechanisms of this effect. Specifically, this paper studies the impact of FDI on technological innovation in China’s industrial sectors from the perspective of technology transactions from 2001 to 2019, and then analyzes whether the intensity of environmental regulation can promote the relationship. Results indicate that FDI promotes technological innovation through technology transactions. In addition, it finds that the intensity of environmental regulation significantly positively moderates the relationship between FDI and technological innovation, which is achieved by positively moderating the FDI–technology transaction relationship. Regional heterogeneity analysis is further conducted, and results show that in the eastern and western regions of China, FDI can stimulate technological innovation within regional industrial sectors through technology trading. Moreover, environmental regulation has a significant positive regulatory effect on the above relationship, but these effects are not supported by evidence in the central region of China.


2021 ◽  
pp. 002199832110335
Author(s):  
Osman Kartav ◽  
Serkan Kangal ◽  
Kutay Yücetürk ◽  
Metin Tanoğlu ◽  
Engin Aktaş ◽  
...  

In this study, composite overwrapped pressure vessels (COPVs) for high-pressure hydrogen storage were designed, modeled by finite element (FE) method, manufactured by filament winding technique and tested for burst pressure. Aluminum 6061-T6 was selected as a metallic liner material. Epoxy impregnated carbon filaments were overwrapped over the liner with a winding angle of ±14° to obtain fully overwrapped composite reinforced vessels with non-identical front and back dome layers. The COPVs were loaded with increasing internal pressure up to the burst pressure level. During loading, deformation of the vessels was measured locally with strain gauges. The mechanical performances of COPVs designed with various number of helical, hoop and doily layers were investigated by both experimental and numerical methods. In numerical method, FE analysis containing a simple progressive damage model available in ANSYS software package for the composite section was performed. The results revealed that the FE model provides a good correlation as compared to experimental strain results for the developed COPVs. The burst pressure test results showed that integration of doily layers to the filament winding process resulted with an improvement of the COPVs performance.


Author(s):  
Atsushi Yamaguchi

Boilers and pressure vessels are heavily used in numerous industrial plants, and damaged equipment in the plants is often detected by visual inspection or non-destructive inspection techniques. The most common type of damage is wall thinning due to corrosion under insulation (CUI) or flow-accelerated corrosion (FAC), or both. Any damaged equipment must be repaired or replaced as necessary as soon as possible after damage has been detected. Moreover, optimization of the time required to replace damaged equipment by evaluating the load carrying capacity of boilers and pressure vessels with wall thinning is expected by engineers in the chemical industrial field. In the present study, finite element analysis (FEA) is used to evaluate the load carrying capacity in T-joints with wall thinning. Burst pressure is a measure of the load carrying capacity in T-joints with wall thinning. The T-joints subjected to burst testing are carbon steel tubes for pressure service STPG370 (JIS G3454). The burst pressure is investigated by comparing the results of burst testing with the results of FEA. Moreover, the maximum allowable working pressure (MAWP) of T-joints with wall thinning is calculated, and the safety margin for the burst pressure is investigated. The burst pressure in T-joints with wall thinning can be estimated the safety side using FEA regardless of whether the model is a shell model or a solid model. The MAWP is 2.6 MPa and has a safety margin 7.5 for burst pressure. Moreover, the MAWP is assessed the as a safety side, although the evaluation is too conservative for the burst pressure.


Author(s):  
Stefan Rüsenberg ◽  
Georg Vonnahme

For the production of LDPE, high process pressures (>1000 bar up to 3500 bar and above) as well as high temperatures (>100 °C up to 300 °C and above) are required. In order to ensure a safe production process the autoclaves and compressors have to be protected against dangerous overpressure. Rupture discs are typically used to protect this high pressure process itself, as well as the employees, and the environment. Traditionally rupture discs for high pressure applications are manufactured by a weld seam which has an influence on the burst pressure. After installation the applied pressure is nearly fully-loaded on the welding joint. Additionally, the welding joint is another unwanted influencing factor. This increases the possibility of an unexpected failure which leads to an unwanted rupture disc response or, in critical cases, to a rupture disc failure recently after initial operation of the process even at lower pressures than the defined burst pressure. This, in turn, leads to a reduced life time of the disc. A special version of a rupture disc, a High Pressure Rupture Disc (HPRD) is developed specifically for this application. This long life version for high pressure applications has a lifetime which is 5–10 times higher than that of a standard rupture disc, that saves money and installation time. The differences are explained in some minor geometrical changes. This safety device allows a protection of high pressures up to 4000 bar and beyond. The HPRD is a forward acting rupture disc and the burst pressure is adjusted by a combination of material thickness, the height of the dome, and, of course, of the chosen material. An easy and simple geometrical change eliminates the welding joint as an influencing factor, thus eliminating any unwanted responding of the rupture disc. The tolerances for high pressure rupture discs are +/−3% and lower and the HPRD can be used for all kind of different high pressure applications.


Author(s):  
Hsoung-Wei Chou ◽  
Chin-Cheng Huang ◽  
Bo-Yi Chen ◽  
Ru-Feng Liu ◽  
Hsien-Chou Lin

With the development of probabilistic fracture mechanics (PFM) methods in recent years, the risk-informed approach has gradually been used to evaluate the structural integrity and reliability of the reactor pressure vessels (RPV) in many countries. For boiling water reactor (BWR) pressure vessels, it has been demonstrated that it is not necessary to perform the inservice inspections of beltline circumferential welds to maintain the required safety margins because their probability of failure is orders of magnitude less than that of beltline vertical welds, thus may well reduce the associated substantial cost and person-rem exposure. In Taiwan, however, the inservice inspections of shell welds still have to be performed every ten years per ASME Boiler and Pressure Vessel Code, Section XI inspection requirements for a BWR type Chinshan nuclear power station. In this work, a very conservative PFM model of FAVOR code consistent with that USNRC used for regulation is built with the plant specific parameters concerning the beltline shell welds of RPVs of Chinshan nuclear power station. Meanwhile, a hypothetical transient of low temperature over-pressure (LTOP) event which challenges the BWR RPV integrity most severely is also assumed as the loading condition for conducting the PFM analyses. Further, the effects of performance of inservice inspection are also studied to determine the benefit of the costly inspection effort. The computed low probability of failure indicates that the analyzed RPVs can provide sufficient reliability even without performing any inservice inspection on the circumferential welds. It also indicates that performing the inservice inspections can not promote the compensating level of safety significantly. Present results can be regarded as the risk incremental factors compared with the safety regulation requirements on RPV degradation and also be helpful for the regulation of BWR plants in Taiwan.


Sign in / Sign up

Export Citation Format

Share Document