scholarly journals Resveratrol Targets Sphingolipid Metabolism to Induce Growth Inhibition in FLT3 ITD Acute Myeloid Leukemia

Proceedings ◽  
2019 ◽  
Vol 40 (1) ◽  
pp. 4
Author(s):  
Ersöz ◽  
Adan

Sphingolipids are important signaling lipids which play crucial roles to determine the cell fate. Ceramide, apoptotic central molecule of sphingolipid metabolism, which is produced through de novo pathway by serine palmitoyl transferase (SPT) and can be converted to antiapoptotic sphingosine-1-phosphate (S1P) and glucosyl ceramide (GC) by sphingosine kinase (SK) and glucosyl ceramide synthase (GCS), respectively. It is aimed to investigate therapeutic potential of resveratrol on FLT3-ITD (Internal Tandem Duplication) AML cells and to identify potential mechanism behind resveratrol-mediated growth inhibition by targeting of ceramide metabolism. The cytotoxic effects of resveratrol, SPT inhibitor (myricoin), SK-1 inhibitor (SKI II), GCS inhibitor (PDMP), resveratrol: SPT inhibitor, resveratrol: SK-1 inhibitor and resveratrol: GCS inhibitor combinations on MOLM-13 and MV4-11 FLT3 ITD AML cells were investigated by cell proliferation assay. Apoptosis was evaluated by annexin V/PI double staining. There were synergistic cytotoxic effects of resveratrol with co-administration of SPT inhibitor, SK-1 inhibitor and GCS inhibitor and apoptosis was synergistically induced for resveratrol and its combinations. This preliminary data showed for the first time that resveratrol might inhibit the growth of FLT3 ITD AML cells through targeting ceramide metabolism.

2002 ◽  
Vol 158 (6) ◽  
pp. 1039-1049 ◽  
Author(s):  
Hervé Le Stunff ◽  
Ismael Galve-Roperh ◽  
Courtney Peterson ◽  
Sheldon Milstien ◽  
Sarah Spiegel

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite that regulates diverse biological processes by binding to a family of G protein–coupled receptors or as an intracellular second messenger. Mammalian S1P phosphatase (SPP-1), which degrades S1P to terminate its actions, was recently cloned based on homology to a lipid phosphohydrolase that regulates the levels of phosphorylated sphingoid bases in yeast. Confocal microscopy surprisingly revealed that epitope-tagged SPP-1 is intracellular and colocalized with the ER marker calnexin. Moreover, SPP-1 activity and protein appeared to be mainly enriched in the intracellular membranes with lower expression in the plasma membrane. Treatment of SPP-1 transfectants with S1P markedly increased ceramide levels, predominantly in the intracellular membranes, diminished survival, and enhanced apoptosis. Remarkably, dihydro-S1P, although a good substrate for SPP-1 in situ, did not cause significant ceramide accumulation or increase apoptosis. Ceramide accumulation induced by S1P was completely blocked by fumonisin B1, an inhibitor of ceramide synthase, but only partially reduced by myriocin, an inhibitor of serine palmitoyltransferase, the first committed step in de novo synthesis of ceramide. Furthermore, S1P, but not dihydro-S1P, stimulated incorporation of [3H]palmitate, a substrate for both serine palmitoyltransferase and ceramide synthase, into C16-ceramide. Collectively, our results suggest that SPP-1 functions in an unprecedented manner to regulate sphingolipid biosynthesis and is poised to influence cell fate.


Author(s):  
Maftuna Shamshiddinova ◽  
Shokhid Gulyamov ◽  
Hee Jung Kim ◽  
Seo Hyeon Jung ◽  
Dong Jae Baek ◽  
...  

Sphingosine-1-phosphate (S1P) synthesized by sphingosine kinase (SPHK) is a signaling molecule, involved in cell proliferation, growth, differentiation, and survival. Indeed, a sharp increase of S1P was linked to the pathological outcome with inflammation, cancer metastasis or angiogenesis etc. In this regard, the SPHK/S1P axis regulation has been a specific issue in anticancer strategy to turn accumulated sphingosine (SPN) into cytotoxic ceramides (Cers). For these purposes, there have been numerous chemicals synthesized for SPHK inhibition. In this study, we investigated the comparative efficiency of dansylated PF-543 (DPF-543) on the Cers synthesis along with PF-543. DPF-543 deserved attention in strong cytotoxicity, due to the cytotoxic Cers accumulation by ceramide synthase (CerSs). DPF-543 exhibited dual actions on Cers synthesis by enhance the serine palmitoyltransferase (SPT) activity, and by inhibiting SPHKs which eventually induced an unusual environment of the high amount of 3-ketosphinganine and sphinganine (SPA). SPA in turn was consumed to synthesize Cers via de novo pathway. Interestingly, PF-543 increased only the SPN level, but not for SPA. In addition, DPF-543 mildly activates acid sphingomyelinase (aSMase) that contributes a partial increase on Cers. Collectively, a dansyl-modified DPF-543 relatively en-hanced Cers accumulation via de novo pathway which was not observed in PF-543. Our results demonstrated that the structural modification on SPHK inhibitors is still an attractive anticancer strategy by regulating sphingolipid metabolism.


2021 ◽  
Vol 22 (17) ◽  
pp. 9190
Author(s):  
Maftuna Shamshiddinova ◽  
Shokhid Gulyamov ◽  
Hee-Jung Kim ◽  
Seo-Hyeon Jung ◽  
Dong-Jae Baek ◽  
...  

Sphingosine-1-phosphate (S1P) synthesized by sphingosine kinase (SPHK) is a signaling molecule, involved in cell proliferation, growth, differentiation, and survival. Indeed, a sharp increase of S1P is linked to a pathological outcome with inflammation, cancer metastasis, or angiogenesis, etc. In this regard, SPHK/S1P axis regulation has been a specific issue in the anticancer strategy to turn accumulated sphingosine (SPN) into cytotoxic ceramides (Cers). For these purposes, there have been numerous chemicals synthesized for SPHK inhibition. In this study, we investigated the comparative efficiency of dansylated PF-543 (DPF-543) on the Cers synthesis along with PF-543. DPF-543 deserved attention in strong cytotoxicity, due to the cytotoxic Cers accumulation by ceramide synthase (CerSs). DPF-543 exhibited dual actions on Cers synthesis by enhancing serine palmitoyltransferase (SPT) activity, and by inhibiting SPHKs, which eventually induced an unusual environment with a high amount of 3-ketosphinganine and sphinganine (SPA). SPA in turn was consumed to synthesize Cers via de novo pathway. Interestingly, PF-543 increased only the SPN level, but not for SPA. In addition, DPF-543 mildly activates acid sphingomyelinase (aSMase), which contributes a partial increase in Cers. Collectively, a dansyl-modified DPF-543 relatively enhanced Cers accumulation via de novo pathway which was not observed in PF-543. Our results demonstrated that the structural modification on SPHK inhibitors is still an attractive anticancer strategy by regulating sphingolipid metabolism.


2019 ◽  
Vol 20 (16) ◽  
pp. 4008
Author(s):  
Valentina Vozella ◽  
Natalia Realini ◽  
Alessandra Misto ◽  
Daniele Piomelli

Previous studies have shown that the sphingolipid-derived mediator sphingosine-1-phosphate (S1P) reduces food intake by activating G protein-coupled S1P receptor-1 (S1PR1) in the hypothalamus. Here, we examined whether feeding regulates hypothalamic mobilization of S1P and other sphingolipid-derived messengers. We prepared lipid extracts from the hypothalamus of C57Bl6/J male mice subjected to one of four conditions: free feeding, 12 h fasting, and 1 h or 6 h refeeding. Liquid chromatography/tandem mass spectrometry was used to quantify various sphingolipid species, including sphinganine (SA), sphingosine (SO), and their bioactive derivatives SA-1-phosphate (SA1P) and S1P. In parallel experiments, transcription of S1PR1 (encoded in mice by the S1pr1 gene) and of key genes of sphingolipid metabolism (Sptlc2, Lass1, Sphk1, Sphk2) was measured by RT-PCR. Feeding increased levels of S1P (in pmol-mg−1 of wet tissue) and SA1P. This response was accompanied by parallel changes in SA and dihydroceramide (d18:0/18:0), and was partially (SA1P) or completely (S1P) reversed by fasting. No such effects were observed with other sphingolipid species targeted by our analysis. Feeding also increased transcription of Sptlc2, Lass1, Sphk2, and S1pr1. Feeding stimulates mobilization of endogenous S1PR1 agonists S1P and SA1P in mouse hypothalamus, via a mechanism that involves transcriptional up-regulation of de novo sphingolipid biosynthesis. The results support a role for sphingolipid-mediated signaling in the central control of energy balance.


2015 ◽  
Vol 396 (6-7) ◽  
pp. 693-705 ◽  
Author(s):  
Woo-Jae Park ◽  
Joo-Won Park

Abstract Sphingolipids have emerged as an important lipid mediator in intracellular signalling and metabolism. Ceramide, which is central to sphingolipid metabolism, is generated either via a de novo pathway, by attaching fatty acyl CoA to a long-chain base, or via a salvage pathway, by degrading pre-existing sphingolipids. As a ‘sphingolipid rheostat’ has been proposed, the balance between ceramide and sphingosine-1-phosphate has been the object of considerable attention. Ceramide has recently been reported to have a different function depending on its acyl chain length: six ceramide synthases (CerS) determine the specific ceramide acyl chain length in mammals. All CerS-deficient mice generated to date show that sphingolipids with defined acyl chain lengths play distinct pathophysiological roles in disease models. This review describes recent advances in understanding the associations of CerS with various diseases and includes clinical case reports.


Author(s):  
Francesco Paduano ◽  
Elisabetta Aiello ◽  
Paul Roy Cooper ◽  
Benedetta Marrelli ◽  
Irina Makeeva ◽  
...  

Dental stem cells (DSCs) holds the ability to differentiate into numerous cell types. This property makes these cells particularly appropriate for therapeutic use in regenerative medicine. We report evidence that when DSCs undergo osteogenic differentiation, the osteoblast-like cells can be reverted back to a stem-like state and then further differentiated toward the osteogenic phenotype again, without gene manipulation. We have investigated two different MSCs types, both from dental tissues: dental follicle progenitor stem cells (DFPCs) and dental pulp stem cells (DPSCs). After osteogenic differentiation, both DFPCs and DPSCs can be reverted to a naïve stem cell-like status; importantly, dedifferentiated DSCs showed a greater potential to further differentiate toward the osteogenic phenotype. Our report aims to demonstrate for the first time that it is possible, under physiological conditions, to control the dedifferentiation of DSCs and that the rerouting of cell fate could potentially be used to enhance their osteogenic therapeutic potential. Significantly, this study first validates the use of dedifferentiated DSCs as an alternative source for bone tissue engineering.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Peng Wang ◽  
Yonghui Yuan ◽  
Wenda Lin ◽  
Hongshan Zhong ◽  
Ke Xu ◽  
...  

AbstractThe potent pleiotropic lipid mediator sphingosine-1-phosphate (S1P) participates in numerous cellular processes, including angiogenesis and cell survival, proliferation, and migration. It is formed by one of two sphingosine kinases (SphKs), SphK1 and SphK2. These enzymes largely exert their various biological and pathophysiological actions through one of five G protein-coupled receptors (S1PR1–5), with receptor activation setting in motion various signaling cascades. Considerable evidence has been accumulated on S1P signaling and its pathogenic roles in diseases, as well as on novel modulators of S1P signaling, such as SphK inhibitors and S1P agonists and antagonists. S1P and ceramide, composed of sphingosine and a fatty acid, are reciprocal cell fate regulators, and S1P signaling plays essential roles in several diseases, including inflammation, cancer, and autoimmune disorders. Thus, targeting of S1P signaling may be one way to block the pathogenesis and may be a therapeutic target in these conditions. Increasingly strong evidence indicates a role for the S1P signaling pathway in the progression of cancer and its effects. In the present review, we discuss recent progress in our understanding of S1P and its related proteins in cancer progression. Also described is the therapeutic potential of S1P receptors and their downstream signaling cascades as targets for cancer treatment.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Timothy M. Doyle ◽  
Mark R. Hutchinson ◽  
Kathryn Braden ◽  
Kali Janes ◽  
Vicky Staikopoulos ◽  
...  

Abstract Opioid therapies for chronic pain are undermined by many adverse side effects that reduce their efficacy and lead to dependence, abuse, reduced quality of life, and even death. We have recently reported that sphingosine-1-phosphate (S1P) 1 receptor (S1PR1) antagonists block the development of morphine-induced hyperalgesia and analgesic tolerance. However, the impact of S1PR1 antagonists on other undesirable side effects of opioids, such as opioid-induced dependence, remains unknown. Here, we demonstrate that naloxone-precipitated morphine withdrawal in mice altered de novo sphingolipid metabolism in the dorsal horn of the spinal cord and increased S1P that accompanied the manifestation of several withdrawal behaviors. Blocking de novo sphingolipid metabolism with intrathecal administration of myriocin, an inhibitor of serine palmitoyltransferase, blocked naloxone-precipitated withdrawal. Noteworthy, we found that competitive (NIBR-15) and functional (FTY720) S1PR1 antagonists attenuated withdrawal behaviors in mice. Mechanistically, at the level of the spinal cord, naloxone-precipitated withdrawal was associated with increased glial activity and formation of the potent inflammatory/neuroexcitatory cytokine interleukin-1β (IL-1β); these events were attenuated by S1PR1 antagonists. These results provide the first molecular insight for the role of the S1P/S1PR1 axis during opioid withdrawal. Our data identify S1PR1 antagonists as potential therapeutics to mitigate opioid-induced dependence and support repurposing the S1PR1 functional antagonist FTY720, which is FDA-approved for multiple sclerosis, as an opioid adjunct.


Circulation ◽  
2020 ◽  
Vol 141 (11) ◽  
pp. 916-930 ◽  
Author(s):  
Yoav Hadas ◽  
Adam S. Vincek ◽  
Elias Youssef ◽  
Magdalena M. Żak ◽  
Elena Chepurko ◽  
...  

Background: Sphingolipids have recently emerged as a biomarker of recurrence and mortality after myocardial infarction (MI). The increased ceramide levels in mammalian heart tissues during acute MI, as demonstrated by several groups, is associated with higher cell death rates in the left ventricle and deteriorated cardiac function. Ceramidase, the only enzyme known to hydrolyze proapoptotic ceramide, generates sphingosine, which is then phosphorylated by sphingosine kinase to produce the prosurvival molecule sphingosine-1-phosphate. We hypothesized that Acid Ceramidase (AC) overexpression would counteract the negative effects of elevated ceramide and promote cell survival, thereby providing cardioprotection after MI. Methods: We performed transcriptomic, sphingolipid, and protein analyses to evaluate sphingolipid metabolism and signaling post-MI. We investigated the effect of altering ceramide metabolism through a loss (chemical inhibitors) or gain (modified mRNA [modRNA]) of AC function post hypoxia or MI. Results: We found that several genes involved in de novo ceramide synthesis were upregulated and that ceramide (C16, C20, C20:1, and C24) levels had significantly increased 24 hours after MI. AC inhibition after hypoxia or MI resulted in reduced AC activity and increased cell death. By contrast, enhancing AC activity via AC modRNA treatment increased cell survival after hypoxia or MI. AC modRNA-treated mice had significantly better heart function, longer survival, and smaller scar size than control mice 28 days post-MI. We attributed the improvement in heart function post-MI after AC modRNA delivery to decreased ceramide levels, lower cell death rates, and changes in the composition of the immune cell population in the left ventricle manifested by lowered abundance of proinflammatory detrimental neutrophils. Conclusions: Our findings suggest that transiently altering sphingolipid metabolism through AC overexpression is sufficient and necessary to induce cardioprotection post-MI, thereby highlighting the therapeutic potential of AC modRNA in ischemic heart disease.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3509-3509
Author(s):  
Xin Li ◽  
Angela Pennisi ◽  
Shmuel Yaccoby

Abstract Sphingosine 1-phosphate (S1P) and ceramide are sphingolipid metabolites and their intracellular balance impacts fate of normal and cancer cells; whereas S1P stimulates tumor cell migration, survival, proliferation and drug resistance, ceramide acts as endogenous pro-apototic factor. The role of S1P/ceramide pathway in myeloma has not been reported. Recent study demonstrated that thalidomide’s antiangiogenic activity involves increased production of ceramide in microvessels (Yabu et al., Blood 2005). In this study we tested the effect of S1P and ceramide on myeloma growth and determined the protective role of S1P against the inhibitory effect of thalidomide on myeloma cells. S1P (0.1–10 μM) stimulated growth of several human myeloma cell lines in serum-free media in time and dose dependent manners, reaching maximum response (>25%, p<0.001) at approximately 5 μM. Annexin V/PI flow analysis and TUNEL staining for detection of apoptosis revealed reduced percent of apoptotic myeloma cells following S1P treatment. S1P also consistently and significantly protected primary CD138-selected myeloma cells (n=5) from serum starvation-induced apoptosis as shown by MTT assay (p<0.01) and annexin V/PI flow cytometry (p<0.05). In contrast, synthetic ceramide (3–10 μM) inhibited growth of myeloma cells, an effect that was completely counteracted by S1P. We have previously demonstrated that osteoclasts and megakaryocytes support primary myeloma cell survival. Autotaxin, a key exo-enzyme involved in extracellular production of S1P and lysophosphatidic acid (LPA), was consistently upregulated in primary myeloma cells by 11±3 folds over baseline levels after co-culture with osteoclasts (n=17, p<0.01) and by 4±1 folds after co-culture with megakaryocytes (n=5, p<0.04), as assessed by microarray and confirmed by qRT-PCR. Furthermore, in co-cultures the S1P receptors antagonist, FTY720, at concentrations that have no direct anti-tumor response (≤1 μM), inhibited the stimulatory effects of osteoclasts and megakaryocytes on survival of our BN-stroma dependent myeloma cell line by 30% to 50% (p<0.001) suggesting that S1P is an important microenvironmental factor in myelomatous bone. Since metabolic activation of thalidomide is required for its anti-tumor activity, thalidomide (10–100 μM) was incubated with active human microsomes while control non-metabolized thalidomide was similarly prepared using inactivated microsomes. Metabolized but not non-metabolized thalidomide effectively inhibited growth of myeloma cells by >40% (p<0.001). Addition of S1P (1 μM) completely abrogated the inhibitory effect of metabolized thalidomide in all tested doses. We conclude that S1P is a myeloma survival and growth factor and protects myeloma cells from thalidomide-induced growth inhibition, presumably through counteracting increased ceramide activity by thalidomide. Pharmacological modulation of enzymes involved in regulation of the ceramide to S1P ratio and blocking S1P activity could constitute novel therapeutic approaches for treating and overcoming drug resistance in myeloma.


Sign in / Sign up

Export Citation Format

Share Document