scholarly journals The Potential Use of Oyster Shell Waste in New Value-Added By-Product

Resources ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 13 ◽  
Author(s):  
Thamyres H. Silva ◽  
Joana Mesquita-Guimarães ◽  
Bruno Henriques ◽  
Filipe S. Silva ◽  
Márcio C. Fredel

Calcium carbonate is one of the most used raw materials in various industries, such as construction materials, food supplement, pharmaceutics, animal feed, plastic production, and others. Calcium carbonate can derive from marine wastes, like crustaceans and bivalve’s shells. The worldwide demand for new sources of food has increased exponentially, and following that tendency, the mariculture—especially the oyster culture—has been increasingly resorting to farming techniques. In 2016, 438 billion tons of oysters were produced. The majority of the shells were unduly discarded, presenting a public health problem. This article offers a solution based on the reuse and recycling of oyster shell residues in the production region of Florianópolis, SC, Brazil. The presented solution is an oyster shell by-product developed by a local company which produces artificial stone. The main component of the artificial stone is a composite material made of oyster shells incorporated in a polymeric resin. The mechanical properties, such as its flexural strength, hardness, Weibull modulus, and fracture analysis, were held in the artificial stone. The mechanical results of the new artificial stone were compared with other natural stones, such as granite and marble, and other commercial artificial stones. This material owns suitable mechanical properties for table tops and workbenches. Using this product as an artificial stone represents an innovation in the development of a new product and adds commercial value to local waste. This product is an excellent example of a circular economy for local producers who care about the environment, and it encourages the reduction of extraction of natural stone, such as granite and marble.

2018 ◽  
Vol 69 (5) ◽  
pp. 1272-1275 ◽  
Author(s):  
Camelia Tecu ◽  
Aurora Antoniac ◽  
Gultekin Goller ◽  
Mustafa Guven Gok ◽  
Marius Manole ◽  
...  

Bone reconstruction is a complex process which involves an osteoconductive matrix, osteoinductive signaling, osteogenic cells, vascularization and mechanical stability. Lately, to improve the healing of the bone defects and to accelerate the bone fusion and bone augmentation, bioceramic composite materials have been used as bone substitutes in the field of orthopedics and dentistry, as well as in cosmetic surgery. Of all types of bioceramics, the most used is hydroxyapatite, because of its similar properties to those of the human bone and better mechanical properties compared to b-tricalcium phosphate [1]. Currently, the most used raw materials sources for obtaining the hydroxyapatite are: bovine bone, seashells, corals, oyster shell, eggshells and human teeth. There are two common ways to obtain hydroxyapatite: synthetically and naturally. Generally, for the improvement of the mechanical properties and the structural one, hydroxyapatite is subjected to the sintering process. Considering the disadvantages of hydroxyapatite such as poor biodegradation rate, b-TCP has been developed, which has some disadvantages too, such as brittleness. For this reason, the aim of this study is to look into the effect of adding magnesium oxide on the sintering behavior, the structure and the mechanical properties of the hydroxyapatite-tricalcium phosphate composites.


2015 ◽  
Vol 1088 ◽  
pp. 656-659
Author(s):  
Ivaldo D. Valarelli ◽  
Rosane A.G. Battistelle ◽  
Barbara Stolte Bezerra ◽  
Luiz A. Melgaço N. Branco ◽  
Eduardo Chahud ◽  
...  

In recent years the production of products derived from wood and bamboo are increasing, due to the search for a more rational exploitation of these raw materials. Amongst these products, the particleboards production combine sustainability and rationality in the use of these materials. In this context, this work has the objective to study the application of alternative raw materials in the manufacture of Medium Density Particleboards (MDP), using residues from industrial processimg of coffee and bamboo. MDP had been produced with particles of giganteus bamboo of the Dendrocalamus species and particle of coffee rind in the intermediate layer of the particleboard, bonded with polyurethane resin based on castor oil. The physical and mechanical characterization was carried out accordingly to NBR 14810-3 (2006). The physical properties evaluated were: of water absorption for 2h and 24h; thickness swallowing for 2h and 24h; density, humidity content. The mechanical properties evaluated were: Tensile strength, static bending (MOR and MOE). The results were compared with NBR 14810-2 (2006) and also with the ANSI A208-1 (1993). The physical performance of these particleboards was below the values recommend by the Brazilian norm. Also the mechanical characteristics are not improve, demonstrating that the inclusion of coffee rind did not benefit the physical characteristics and nor the mechanical ones. However it can be used as construction materials for partitions and ceiling panels.


2015 ◽  
Vol 754-755 ◽  
pp. 290-295 ◽  
Author(s):  
Alida Abdullah ◽  
Ku Amirrul Rahman Ku Yin ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Kamarudin Hussin ◽  
Mien Van Tran

This study was conducted to compare the mechanical properties of fly ash artificial geopolymer aggregates with natural aggregate (rock) in term of its impact strength, specific gravity and water absorption.The raw materials used were fly ash, sodium hydroxide, sodium silicate and natural aggregate. After the artificial geopolymer aggregate has been produced, its water absorption, specific gravity and aggregate impact test has been done. All results obtained were compared to natural aggregate. The result shows that the fly ash geopolymer aggregate are lighter than natural aggregate in term of its specific gravity. The impact value for fly ash artificial geopolymer aggregate slightly high compared to natural aggregate while it has high water absorption value compared to natural aggregate. As conclusion, the fly ash artificial geopolymer aggregate can be used as one of the construction materials in concrete as an alternative for coarse aggregate besides natural aggregate with more lightweight properties.


2015 ◽  
Vol 660 ◽  
pp. 9-16 ◽  
Author(s):  
Wan Mastura Wan Ibrahim ◽  
Kamarudin Hussin ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Aeslina Abdul Kadir ◽  
Mohammed Binhussain

Bricks are widely used as a construction and building material due to its properties. Recent years have seen a great development in new types of inorganic cementitious binders called ‘‘geopolymeric cement’’ around the world. This prompted its use in bricks, which improves the greenness of ordinary bricks. The development of fly ash-based geopolymer lightweight bricks is relatively new in the field of construction materials. This paper reviews the uses of fly ash as a raw materials and addition of foaming agent to the geopolymeric mixture to produce lightweight bricks. The effects on their physical and mechanical properties have been discussed. Most manufactured bricks with incorporation of foaming agent have shown positive effects by producing lightweight bricks, increased porosity and improved the thermal conductivities of fly ash-based geopolymer bricks. However, less of performances in number of cases in terms of mechanical properties were also demonstrated.


Although cocoa production generates numerous by-products, only 10% of cocoa pods are used commercially, with the remaining 90% discarded. Cocoa processing generates by-products such as pod husks, pulp, and bean shells. It can recycle as a result of its high fiber and bioactive compounds Cocoa-pods produce additional dietary fiber, wrinkle-reducing cosmetics and preservatives, animal feed, organic fertilizers, raw materials for paper-making, and biofuels. Sugar, minerals, fat, and protein are abundant in the pulp. The cocoa pulp can be used to make various beverage products, including mixed drinks with added fruits, kefir beverages, wine, soft drinks, marmalade, and vinegar. Because of its high content of lignin, cellulose, protein, fat, carbs, and polyphenols, the cocoa bean shell is an excellent source of dietary fiber. It contains a high fiber content and has a high resale value when used as a renewable energy source. This review article will discuss the management of cocoa by-products and value-added products with various applications


2019 ◽  
Vol 16 (4) ◽  
pp. 85-96
Author(s):  
An Hai Thien Phung ◽  
Tai Tan Dang

Artificial stone is composite of unsaturated polyester and calcium carbonate that is mostly synthesized. This study aimed to investigate the effect of additives on shrinkage property of Unsaturated Polyester (UP) and mechanical properties of artificial stone such as flexural strength, impact strength, and hardness. In this paper, we tested effect of additives such as anhydride maleic (AM), acrylonitrile butadiene styrene (ABS), methyl methacrylate (MMA) and polyvinyl acetate (PVAc) with varying concentrations from 1 – 10 phr under condition process includes 2 phr BPO, 1100C cured temperature and 20 mins cured time


2021 ◽  
Vol 3 (11) ◽  
Author(s):  
Blasius Ngayakamo ◽  
Gbetoglo Charles Komadja ◽  
Abdulhakeem Bello ◽  
Azikiwe Peter Onwualu

AbstractConstruction and mining industries around the globe have been criticized for production of enormous solid wastes that have potential environmental impacts. Therefore, this study presents a feasible approach to recover and utilize granite micronized stones waste for production of eco-friendly bricks. This research work, aimed at substituting a natural clay with granite powder to produce value-added bricks with pronounced physical–mechanical properties. The micronized granite waste stones were crushed and ground to obtain a fine powder sample. Thereafter, different batch compositions containing a varied proportions of granite powder were prepared and fired at different sintering temperatures: 900, 1000 and 1100 °C. The raw materials and bricks were characterized for their chemical compositions, microstructural, mineralogical and physical–mechanical properties. The results showed that, an increase in granite waste powder and sintering temperature enhanced the quality of fired clay bricks in terms of mechanical strength and decreased simultaneously the apparent porosity and water absorption. The final experimental approach showed that, the possibility to produce eco-friendly bricks containing up to 30 wt% of granite powder with enhanced engineering properties fired at 1100 °C is promising. Graphic abstract


2020 ◽  
Vol 1010 ◽  
pp. 620-625
Author(s):  
Ahmad Kamil Fakhruddin ◽  
Hasmaliza M. Mohamad

Bioactive glass use silica (SiO2), calcium carbonate (CaCO3), sodium carbonate (Na2CO3), phosphorus pentoxide (P2O5) as raw materials. In this work, bioactive glass (BG); 45S5 bioactive glass was synthesized using natural resources materials; rice husk ash (RHA) as silica (SiO2) source and seashell (SS) as calcium carbonate (CaCO3) source through melt derived method. All raw materials were melted at 1400 °C and water quenched. The glass frit obtained was milled and sieved then analyzed using X-ray diffraction (XRD), Fourier Transform Infrared spectroscope (FTIR) and Scanning Electron Microscope (SEM). The mechanical properties 45S5 BG pellet was observed through diametral tensile stress (DTS). The XRD and FTIR pattern for all sample synthesized using natural resources raw materials show similar pattern with control sample 45S5 synthesis using pure raw materials. The mechanical properties for all samples also have not significantly different with control samples


2014 ◽  
Vol 925 ◽  
pp. 464-468 ◽  
Author(s):  
Aleksandrs Korjakins ◽  
Liga Upeniece ◽  
Diana Bajare

Anxiety of society about global warming is increasingly growing and interest about construction materials that are less harmful to the environment is growing as well. Manufactures and scientists are urged to think about the usage of more effective resources, which are available and necessary for production, as well as to find possibilities and solutions for the decrease of primary energy resource depletion by producing ecological materials. Clay is one of local raw materials that can help solving growing problems by production of ceramic materials and their products, as well as more widely distributed sediments, which mainly form the upper part of Earth’s crust. Alongside traditional ceramic materials, porous ceramics are also widely researched, becoming an increasingly popular material in the world, mainly owing to their wide possibilities of usage in different technical and technology industries – from construction to mechanical engineering, health industry and even space technology. Obtaining porous ceramics using different kind of burnable fillers, such as natural products obtained as waste from agricultural industry, as well as controllable form products obtained from polymers, allow to form desirable porous structures within wide ranges: with pore dimensions starting from some micrometers up to 2-3 millimeters. Porous ceramic materials obtained within this research are breathing, they are thermostable materials, resistant to thermal impacts, corrosion and are easy in processing. During the presented research porous ceramics were produced using different kinds of burnable fillers. The optimal burning treatment was developed for obtaining required mechanical properties of porous ceramics. The physical-mechanical properties of obtained ceramics were evaluated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nongnuch Laohavisuti ◽  
Banjong Boonchom ◽  
Wimonmat Boonmee ◽  
Kittichai Chaiseeda ◽  
Somkiat Seesanong

AbstractEgg consumption is very high throughout the world and with it comes enormous amount of waste eggshells. To reduce and utilize these wastes, eggshell wastes were simply transformed to low- or high-purity calcium carbonate grades by washing, crushing, and drying to use as raw materials for producing highly valuable calcium phosphate products. Low-purity calcium carbonate grade was used to prepare triple superphosphate for using in fertilizer industry, whereas high-purity calcium carbonate grade was used to produce dicalcium phosphate dihydrate, monocalcium phosphate monohydrate, and tricalcium phosphate for using in mineral feed and food additive industries. All calcium phosphate samples obtained by simple, rapid, cheap, and environmentally safe method using eggshells and phosphoric acid were identified and their structural phases and impurities were determined by XRF, XRD and FTIR techniques. Thermal behaviors of raw materials and the prepared calcium phosphates excepted tricalcium phosphate were investigated by TG/DTG techniques. The methodologies described here will be useful to manage eggshells by converting them to highly valuable products, which can solve eggshell wastes problem from industries and communities. This finding supports the viewpoint of zero waste operation to produce value-added products for obtaining sustainable development, which may be selected as an alternative way for material recycling and waste management in the future.


Sign in / Sign up

Export Citation Format

Share Document