scholarly journals Benthic Habitat Mapping Model and Cross Validation Using Machine-Learning Classification Algorithms

2019 ◽  
Vol 11 (11) ◽  
pp. 1279 ◽  
Author(s):  
Pramaditya Wicaksono ◽  
Prama Ardha Aryaguna ◽  
Wahyu Lazuardi

This research was aimed at developing the mapping model of benthic habitat mapping using machine-learning classification algorithms and tested the applicability of the model in different areas. We integrated in situ benthic habitat data and image processing of WorldView-2 (WV2) image to parameterise the machine-learning algorithm, namely: Random Forest (RF), Classification Tree Analysis (CTA), and Support Vector Machine (SVM). The classification inputs are sunglint-free bands, water column corrected bands, Principle Component (PC) bands, bathymetry, and the slope of underwater topography. Kemujan Island was used in developing the model, while Karimunjawa, Menjangan Besar, and Menjangan Kecil Islands served as test areas. The results obtained indicated that RF was more accurate than any other classification algorithm based on the statistics and benthic habitats spatial distribution. The maximum accuracy of RF was 94.17% (4 classes) and 88.54% (14 classes). The accuracies from RF, CTA, and SVM were consistent across different input bands for each classification scheme. The application of RF model in the classification of benthic habitat in other areas revealed that it is recommended to make use of the more general classification scheme in order to avoid several issues regarding benthic habitat variations. The result also established the possibility of mapping a benthic habitat without the use of training areas.

2021 ◽  
Author(s):  
jorge cabrera Alvargonzalez ◽  
Ana Larranaga Janeiro ◽  
Sonia Perez ◽  
Javier Martinez Torres ◽  
Lucia martinez lamas ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been and remains one of the major challenges humanity has faced thus far. Over the past few months, large amounts of information have been collected that are only now beginning to be assimilated. In the present work, the existence of residual information in the massive numbers of rRT-PCRs that tested positive out of the almost half a million tests that were performed during the pandemic is investigated. This residual information is believed to be highly related to a pattern in the number of cycles that are necessary to detect positive samples as such. Thus, a database of more than 20,000 positive samples was collected, and two supervised classification algorithms (a support vector machine and a neural network) were trained to temporally locate each sample based solely and exclusively on the number of cycles determined in the rRT-PCR of each individual. Finally, the results obtained from the classification show how the appearance of each wave is coincident with the surge of each of the variants present in the region of Galicia (Spain) during the development of the SARS-CoV-2 pandemic and clearly identified with the classification algorithm.


2019 ◽  
Vol 58 (06) ◽  
pp. 205-212
Author(s):  
Cirruse Salehnasab ◽  
Abbas Hajifathali ◽  
Farkhondeh Asadi ◽  
Elham Roshandel ◽  
Alireza Kazemi ◽  
...  

Abstract Background The acute graft-versus-host disease (aGvHD) is the most important cause of mortality in patients receiving allogeneic hematopoietic stem cell transplantation. Given that it occurs at the stage of severe tissue damage, its diagnosis is late. With the advancement of machine learning (ML), promising real-time models to predict aGvHD have emerged. Objective This article aims to synthesize the literature on ML classification algorithms for predicting aGvHD, highlighting algorithms and important predictor variables used. Methods A systemic review of ML classification algorithms used to predict aGvHD was performed using a search of the PubMed, Embase, Web of Science, Scopus, Springer, and IEEE Xplore databases undertaken up to April 2019 based on Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statements. The studies with a focus on using the ML classification algorithms in the process of predicting of aGvHD were considered. Results After applying the inclusion and exclusion criteria, 14 studies were selected for evaluation. The results of the current analysis showed that the algorithms used were Artificial Neural Network (79%), Support Vector Machine (50%), Naive Bayes (43%), k-Nearest Neighbors (29%), Regression (29%), and Decision Trees (14%), respectively. Also, many predictor variables have been used in these studies so that we have divided them into more abstract categories, including biomarkers, demographics, infections, clinical, genes, transplants, drugs, and other variables. Conclusion Each of these ML algorithms has a particular characteristic and different proposed predictors. Therefore, it seems these ML algorithms have a high potential for predicting aGvHD if the process of modeling is performed correctly.


Author(s):  
Seyma Kiziltas Koc ◽  
Mustafa Yeniad

Technologies which are used in the healthcare industry are changing rapidly because the technology is evolving to improve people's lifestyles constantly. For instance, different technological devices are used for the diagnosis and treatment of diseases. It has been revealed that diagnosis of disease can be made by computer systems with developing technology.Machine learning algorithms are frequently used tools because of their high performance in the field of health as well as many field. The aim of this study is to investigate different machine learning classification algorithms that can be used in the diagnosis of diabetes and to make comparative analyzes according to the metrics in the literature. In the study, seven classification algorithms were used in the literature. These algorithms are Logistic Regression, K-Nearest Neighbor, Multilayer Perceptron, Random Forest, Decision Trees, Support Vector Machine and Naive Bayes. Firstly, classification performance of algorithms are compared. These comparisons are based on accuracy, sensitivity, precision, and F1-score. The results obtained showed that support vector machine algorithm had the highest accuracy with 78.65%.


Author(s):  
Charu Latkar

For the protection and proximity of railway networks it is substantial to Promptly detect and identify faults in the railway tracks. In this paper, railway track fault diagnosis is approximated from the vertical and lateral acceleration using a MPU6050. MPU6050 consisting of three sensors namely gyroscope, magnetometer and accelerometer are used to distinguish line and level as symetricities in a railway track. A GSM module is used to notify the location of faults on tracks. Arduino Microcontroller is interfaced using Arduino UNO IDE. The results show that the condition of railway track irregularity and railway track striation can be approximated constructively. The processed data is uploaded to the open source cloud provider thingspeak.com. The use of various Machine Learning Algorithms are proposed to accomplish the above tasks based on the commonly available measured signals. By considering the signals from multiple railway tracks in a geographic location, faults are diagnosed from their spatial and temporal dependencies. The irregularities in the railway tracks are detected using the Inertial Monitoring Unit, providing the necessary data about future deformities using Machine Learning. Using Python 3.0, a generative model is developed to show that the AdaBoost network can learn these dependencies directly from the data. Seven different classification algorithms used for this project are Logistic regression,Naive Bayes Algorithm,Support Vector Machine, Ensemble Machine (Average) learning Algorithm, XGBoost Classifier, Extreme Machine Learning and AdaBoost Classifier. Among the above 7 classification algorithms, AdaBoost Learning has given the highest accuracy,i.e of 93.93 %. The AdaBoost Machine Learning Model is used throughout the model.


2018 ◽  
Vol 1 (1) ◽  
pp. 6 ◽  
Author(s):  
Lubna Farhi ◽  
Razia Zia ◽  
Zain Anwar Ali

Brain cancer has remained one of the key causes ofdeaths in people of all ages. One way to survival amongst patientsis to correctly diagnose cancer in its early stages. Recentlymachine learning has become a very important tool in medicalimage classification. Our approach is to examine and comparevarious machine learning classification algorithms that help inbrain tumor classification of Magnetic Resonance (MR) images.We have compared Artificial Neural Network (ANN), K-nearestNeighbor (KNN), Decision Tree (DT), Support Vector Machine(SVM) and Naïve Bayes (NB) classifiers to determine theaccuracy of each classifier and find the best amongst them forclassification of cancerous and noncancerous brain MR images.We have used 86 MR images and extracted a large number offeatures for each image. Since the equal number of images, havebeen used thus there is no suspicion of results being biased. Forour data set the most accurate results were provided by ANN. Itwas found that ANN provides better results for medium to largedatabase of Brain MR Images.


Diabetes Mellitus is considered one of the chronic diseases of humankind which causes an increase in blood sugar. Many complications are reported if DM remains untreated and unidentified. Identification of this disease requires a lot of physical and mental trauma and effort which involves visiting a doctor, blood and urine test at the diagnostic center which consumes more time. Difficulties can be over crossed using the trending technology of Machine learning. The idea of the model is to prognosticate the occurrence of a diabetic with high accuracy. Therefore, two machine learning classification algorithms namely Fine Decision Tree and Support Vector Machine are used in this experiment to detect diabetes at an early stage. Therefore two machine learning classification algorithms namely Fine Decision Tree and Support Vector Machine are used in this experiment to detect diabetes at an early stage.


2021 ◽  
Vol 6 (1) ◽  
pp. 55-59
Author(s):  
Yahya Dwikarsa ◽  
Abdul Basith

The scale value is an important part of the segmentation stage which is part of Object-Based Image Analysis (OBIA). Selection of scale value can determine the size of the object which affects the results of classification accuracy. In addition to setting the scale value (multiscale), selection of machine learning algorithm applied to classify shallow water benthic habitat objects can also determine the success of the classification. Combination of setting scale values and classification algorithms are aimed to get optimal results by examining classification accuracies. This study uses orthophoto images processed from Unmanned Aerial Vehicle (UAV) mission intended to capture benthic habitat in Karimunjawa waters. The classification algorithms used are Support Vector Machine (SVM), Bayes, and K-Nearest Neighbors (KNN). The results of the classification of combination are then tested for accuracy based on the sample and Training Test Area (TTA) masks. The result shows that SVM algorithm with scale of 300 produces the best level of accuracy. While the lowest accuracy is achieved by using SVM algorithm with scale of 100. The result shows that the optimal scale settings in segmenting objects sequentially are 300, 200, and 100


2020 ◽  
Vol 15 ◽  
Author(s):  
Shivani Aggarwal ◽  
Kavita Pandey

Background: Polycystic ovary syndrome is commonly known as PCOS and it is surprising that it affects up to 18% of women in reproductive age. PCOS is the most usually occurring hormone-related disorder. Some of the symptoms of PCOS are irregular periods, increased facial and body hair growth, attain more weight, darkening of skin, diabetes and trouble conceiving (infertility). It also came into light that patients suffering from PCOS also possess a range of metabolic abnormalities. Due to metabolic abnormalities, some disorder may occur which increase the risk of insulin resistance, type 2 diabetes and impaired glucose tolerance (a sign of prediabetes). Family members of women suffering from PCOS are also at higher hazardous level for developing the same metabolic abnormalities. Obesity and overweight status contribute to insulin resistance in PCOS. Objective: In the modern era, there are several new technologies available to diagnose PCOS and one of them is Machine learning algorithms because they are exposed to new data. These algorithms learn from past experiences to produce reliable and repeatable decisions. In this article, Machine learning algorithms are used to identify the important features to diagnose PCOS. Methods: Several classification algorithms like Support vector machine (SVM), Logistic Regression, Gradient Boosting, Random Forest, Decision Tree and K-Nearest Neighbor (KNN) are uses well organized test datasets for classify huge records. Initially a dataset of 541 instances and 41 attributes has been taken to apply the prediction models and a manual feature selection is done over it. Results: After the feature selection, a set of 12 attributes has been identified which plays a crucial role in diagnosing PCOS. Conclusion: There are several researches progressing in the direction of diagnosing PCOS but till now the relevant features are not identify for the same.


2021 ◽  
Vol 13 (14) ◽  
pp. 7602
Author(s):  
Guofeng Ma ◽  
Xuhui Pan

Recently, decreasing energy consumption under the premise of building comfort has become a popular topic, especially visual comfort. Existing research on visual comfort lacks a standard of how to select indicators. Moreover, studies on individual visual preference considering the interaction between internal and external environment are few. In this paper, we ranked common visual indicators by the cloud model combined with the failure mode and effect analysis (FMEA) and hierarchical technique for order of preference by similarity to ideal solution (TOPSIS). Unsatisfied vertical illuminance, daylight glare index, luminance ratio, and shadow position are the top four indicators. Based on these indicators, we also built the individual visual comfort model through five categories of personalized data obtained from the experiment, which was trained by four machine learning algorithms. The results show that random forest has the best prediction performance and support vector machine is second. Gaussian mixed model and classification tree have the worst performance of stability and accuracy. In addition, this study also programmed a BIM plug-in integrating environmental data and personal preference data to predict appropriate vertical illuminance for a specific occupant. Thus, managers can adjust the intensity of artificial light in the office by increasing or decreasing the height of table lamps, saving energy and improving occupant comfort. This novel model will serve as a paradigm for selecting visual indicators and make indoor space be tailored to meet individual visual preferences.


2021 ◽  
Vol 15 (58) ◽  
pp. 242-253
Author(s):  
Akshansh Mishra ◽  
Apoorv Vats

Machine Learning focuses on the study of algorithms that are mathematical or statistical in nature in order to extract the required information pattern from the available data. Supervised Machine Learning algorithms are further sub-divided into two types i.e. regression algorithms and classification algorithms. In the present study, four supervised machine learning-based classification models i.e. Decision Trees algorithm, K- Nearest Neighbors (KNN) algorithm, Support Vector Machines (SVM) algorithm, and Ada Boost algorithm were subjected to the given dataset for the determination of fracture location in dissimilar Friction Stir Welded AA6061-T651 and AA7075-T651 alloy. In the given dataset, rotational speed (RPM), welding speed (mm/min), pin profile, and axial force (kN) were the input parameters while Fracture location is the output parameter. The obtained results showed that the Support Vector Machine (SVM) algorithm classified the fracture location with a good accuracy score of 0.889 in comparison to the other algorithms.


Sign in / Sign up

Export Citation Format

Share Document