scholarly journals First Vegetation Optical Depth Mapping from Sentinel-1 C-band SAR Data over Crop Fields

2019 ◽  
Vol 11 (23) ◽  
pp. 2769 ◽  
Author(s):  
Mohammad El Hajj ◽  
Nicolas Baghdadi ◽  
Jean-Pierre Wigneron ◽  
Mehrez Zribi ◽  
Clément Albergel ◽  
...  

Monitoring crop status at plot scale in agricultural areas is essential for crop and irrigation management and yield optimization. The Vegetation Optical Depth (VOD) of canopy is directly related to the canopy water content, and thus, it represents an effective tool for crop health monitoring. Currently, VOD is provided at low spatial resolution which makes these estimations useless for vegetation monitoring at plot scale. Therefore, the aim of this study is to provide the first approach to estimate VOD at plot scale for non-irrigated plots from C-band Sentinel-1 (S1) Synthetic Aperture Radar (SAR) data. The proposed approach was tested on a study site of 50 km × 50 km located in Catalonia, Spain. VOD estimates were provided for two crop growth cycles of non-irrigated crop types (barley, fallow, oat, wheat, and rapeseed). The relevance of VOD estimates was investigated for both growth cycles using temporal profiles of the Normalized Difference Vegetation Index (NDVI). It is shown that the temporal dynamics of VOD values computed from VV polarization fits that of NDVI with a medium to good coefficient of determination (R2 ranging from 0.39 to 0.61 for barley, fallow, oat, and wheat respectively). However, during the beginning of the senescence period in both cycles (mainly in May for winter crops), VOD decreases with the decrease in Vegetation Water Content (VWC) while NDVI keeps increasing as photosynthetic activity continues developing. This illustrates the importance of VOD in crop water loss (stress and/or transpiration) monitoring. The potential of VOD to spot water loss in vegetation is also demonstrated as the evening (18h00) VOD values are lower than those of morning (06h00) due to high daytime temperature that reduces water content in vegetation. Finally, it is shown that VOD values computed from VH polarization are not correlated with NDVI.

2021 ◽  
Vol 13 (3) ◽  
pp. 438
Author(s):  
Subrina Tahsin ◽  
Stephen C. Medeiros ◽  
Arvind Singh

Long-term monthly coastal wetland vegetation monitoring is the key to quantifying the effects of natural and anthropogenic events, such as severe storms, as well as assessing restoration efforts. Remote sensing data products such as Normalized Difference Vegetation Index (NDVI), alongside emerging data analysis techniques, have enabled broader investigations into their dynamics at monthly to decadal time scales. However, NDVI data suffer from cloud contamination making periods within the time series sparse and often unusable during meteorologically active seasons. This paper proposes a virtual constellation for NDVI consisting of the red and near-infrared bands of Landsat 8 Operational Land Imager, Sentinel-2A Multi-Spectral Instrument, and Advanced Spaceborne Thermal Emission and Reflection Radiometer. The virtual constellation uses time-space-spectrum relationships from 2014 to 2018 and a random forest to produce synthetic NDVI imagery rectified to Landsat 8 format. Over the sample coverage area near Apalachicola, Florida, USA, the synthetic NDVI showed good visual coherence with observed Landsat 8 NDVI. Comparisons between the synthetic and observed NDVI showed Root Mean Squared Error and Coefficient of Determination (R2) values of 0.0020 sr−1 and 0.88, respectively. The results suggest that the virtual constellation was able to mitigate NDVI data loss due to clouds and may have the potential to do the same for other data. The ability to participate in a virtual constellation for a useful end product such as NDVI adds value to existing satellite missions and provides economic justification for future projects.


2021 ◽  
Vol 13 (11) ◽  
pp. 2088
Author(s):  
Carlos Quemada ◽  
José M. Pérez-Escudero ◽  
Ramón Gonzalo ◽  
Iñigo Ederra ◽  
Luis G. Santesteban ◽  
...  

This paper reviews the different remote sensing techniques found in the literature to monitor plant water status, allowing farmers to control the irrigation management and to avoid unnecessary periods of water shortage and a needless waste of valuable water. The scope of this paper covers a broad range of 77 references published between the years 1981 and 2021 and collected from different search web sites, especially Scopus. Among them, 74 references are research papers and the remaining three are review papers. The different collected approaches have been categorized according to the part of the plant subjected to measurement, that is, soil (12.2%), canopy (33.8%), leaves (35.1%) or trunk (18.9%). In addition to a brief summary of each study, the main monitoring technologies have been analyzed in this review. Concerning the presentation of the data, different results have been obtained. According to the year of publication, the number of published papers has increased exponentially over time, mainly due to the technological development over the last decades. The most common sensor is the radiometer, which is employed in 15 papers (20.3%), followed by continuous-wave (CW) spectroscopy (12.2%), camera (10.8%) and THz time-domain spectroscopy (TDS) (10.8%). Excluding two studies, the minimum coefficient of determination (R2) obtained in the references of this review is 0.64. This indicates the high degree of correlation between the estimated and measured data for the different technologies and monitoring methods. The five most frequent water indicators of this study are: normalized difference vegetation index (NDVI) (12.2%), backscattering coefficients (10.8%), spectral reflectance (8.1%), reflection coefficient (8.1%) and dielectric constant (8.1%).


2013 ◽  
Vol 33 (5) ◽  
pp. 919-928 ◽  
Author(s):  
Rosimaldo Soncela ◽  
Silvio C. Sampaio ◽  
Marcio A. Vilas Boas ◽  
Maria H. F. Tavares ◽  
Adriana Smanhotto

The determination of volumetric water content of soils is an important factor in irrigation management. Among the indirect methods for estimating, the time-domain reflectometry (TDR) technique has received a significant attention. Like any other technique, it has advantages and disadvantages, but its greatest disadvantage is the need of calibration and high cost of acquisition. The main goal of this study was to establish a calibration model for the TDR equipment, Trase System Model 6050X1, to estimate the volumetric water content in a Distroferric Red Latosol. The calibration was carried out in a laboratory with disturbed soil samples under study, packed in PVC columns of a volume of 0.0078m³. The TDR probes were handcrafted with three rods and 0.20m long. They were vertically installed in soil columns, with a total of five probes per column and sixteen columns. The weightings were carried out in a digital scale, while daily readings of dielectric constant were obtained in TDR equipment. The linear model θν = 0.0103 Ka + 0.1900 to estimate the studied volumetric water content showed an excellent coefficient of determination (0.93), enabling the use of probes in indirect estimation of soil moisture.


Author(s):  
S. Talebi ◽  
J. Shi ◽  
T. Zhao

This paper presents a theoretical study of derivation Microwave Vegetation Indices (MVIs) in different pairs of frequencies using two methods. In the first method calculating MVI in different frequencies based on Matrix Doubling Model (to take in to account multi scattering effects) has been done and analyzed in various soil properties. The second method was based on MVI theoretical basis and its independency to underlying soil surface signals. Comparing the results from two methods with vegetation properties (single scattering albedo and optical depth) indicated partial correlation between MVI from first method and optical depth, and full correlation between MVI from second method and vegetation properties. The second method to derive MVI can be used widely in global microwave vegetation monitoring.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2271 ◽  
Author(s):  
Xianyu Guo ◽  
Kun Li ◽  
Yun Shao ◽  
Zhiyong Wang ◽  
Hongyu Li ◽  
...  

Timely and accurate estimation of rice parameters plays a significant role in rice monitoring and yield forecasting for ensuring food security. Compact-polarimetric (CP) synthetic aperture radar (SAR), a good compromise between the dual- and quad-polarized SARs, is an important part of the new generation of Earth observation systems. In this paper, the ability of CP SAR data to retrieve rice biophysical parameters was explored using a modified water cloud model. The results showed that S1 was superior to other CP variables in rice height inversion with a coefficient of determination (R2) of 0.92 and a root-mean-square error (RMSE) of 5.81 cm. RL was the most suitable for inverting the volumetric water content of the rice canopy, with an R2 of 0.95 and a RMSE of 0.31 kg/m3. The m-χ decomposition produced the highest accuracies for the ear biomass: R2 was 0.89 and RMSE was 0.17 kg/m2. The highest accuracy of leaf area index (LAI) retrieval was obtained for RH (right circular transmit and horizontal linear receive) with an R2 of 0.79 and a RMSE of 0.33. This study illustrated the capability of CP SAR data with respect to retrieval of rice biophysical parameters, especially for height, volumetric water content of the rice canopy, and ear biomass, and this mode may offer the best option for rice-monitoring applications because of swath coverage.


2011 ◽  
Vol 31 (2) ◽  
pp. 260-268 ◽  
Author(s):  
Alan K. Rêgo Segundo ◽  
José H. Martins ◽  
Paulo M. de B. Monteiro ◽  
Rrubens A. de Oliveira ◽  
Delly Oliveira Filho

The irrigation management based on the monitoring of the soil water content allows for the minimization of the amount of water applied, making its use more efficient. Taking into account these aspects, in this work, a sensor for measuring the soil water content was developed to allow real time automation of irrigation systems. This way, problems affecting crop yielding such as irregularities in the time to turn on or turn off the pump, and excess or deficit of water can be solved. To develop the sensors were used stainless steel rods, resin, and insulating varnish. The sensors measuring circuit was based on a microcontroller, which gives its output signal in the digital format. The sensors were calibrated using soil of the type “Quartzarenic Neosoil”. A third order polynomial model was fitted to the experimental data between the values of water content corresponding to the field capacity and the wilting point to correlate the soil water content obtained by the oven standard method with those measured by the electronic circuit, with a coefficient of determination of 93.17%, and an accuracy in the measures of ±0.010 kg kg-1. Based on the results, it was concluded that the sensor and its implemented measuring circuit can be used in the automation process of irrigation systems.


2019 ◽  
Vol 11 (6) ◽  
pp. 730 ◽  
Author(s):  
Somayeh Talebiesfandarani ◽  
Tianjie Zhao ◽  
Jiancheng Shi ◽  
Paolo Ferrazzoli ◽  
Jean-Pierre Wigneron ◽  
...  

Monitoring global vegetation dynamics is of great importance for many environmental applications. The vegetation optical depth (VOD), derived from passive microwave observation, is sensitive to the water content in all aboveground vegetation and could serve as complementary information to optical observations for global vegetation monitoring. The microwave vegetation index (MVI), which is originally derived from the zero-order model, is a potential approach to derive VOD and vegetation water content (VWC), however, it has limited application at dense vegetation in the global scale. In this study, we preferred to use a more complex vegetation model, the Tor Vergata model, which takes into account multi-scattering effects inside the vegetation and between the vegetation and soil layer. Validation with ground-based measurements proved this model is an efficient tool to describe the microwave emissions of corn and wheat. The MVI has been derived through two methods: (i) polarization independent ( MVI B P ) and (ii) time invariant ( MVI B T ), based on model simulations at the L band. Results show that the MVI B T has a stronger sensitivity to vegetation properties compared with MVI B P . MVI B T is used to retrieve VOD and VWC, and the results were compared to physical VOD and measured VWC. Comparisons indicated that MVI B T has a great potential to retrieve VOD and VWC. By using L band time-series information, the performance of MVIs could be enhanced and its application in a global scale could be improved while paying attention to vegetation structure and saturation effects.


2020 ◽  
Vol 12 (12) ◽  
pp. 2015 ◽  
Author(s):  
Manuel Ángel Aguilar ◽  
Rafael Jiménez-Lao ◽  
Abderrahim Nemmaoui ◽  
Fernando José Aguilar ◽  
Dilek Koc-San ◽  
...  

Remote sensing techniques based on medium resolution satellite imagery are being widely applied for mapping plastic covered greenhouses (PCG). This article aims at testing the spectral consistency of surface reflectance values of Sentinel-2 MSI (S2 L2A) and Landsat 8 OLI (L8 L2 and the pansharpened and atmospherically corrected product from L1T product; L8 PANSH) data in PCG areas located in Spain, Morocco, Italy and Turkey. The six corresponding bands of S2 and L8, together with the normalized difference vegetation index (NDVI), were generated through an OBIA approach for each PCG study site. The coefficient of determination (r2) and the root mean square error (RMSE) were computed in sixteen cloud-free simultaneously acquired image pairs from the four study sites to evaluate the coherence between the two sensors. It was found that the S2 and L8 correlation (r2 > 0.840, RMSE < 9.917%) was quite good in most bands and NDVI. However, the correlation of the two sensors fluctuated between study sites, showing occasional sun glint effects on PCG roofs related to the sensor orbit and sun position. Moreover, higher surface reflectance discrepancies between L8 L2 and L8 PANSH data, mainly in the visible bands, were always observed in areas with high-level aerosol values derived from the aerosol quality band included in the L8 L2 product (SR aerosol). In this way, the consistency between L8 PANSH and S2 L2A was improved mainly in high-level aerosol areas according to the SR aerosol band.


2019 ◽  
Vol 11 (16) ◽  
pp. 1873 ◽  
Author(s):  
Li Hua ◽  
Huidong Wang ◽  
Haigang Sui ◽  
Brian Wardlow ◽  
Michael J. Hayes ◽  
...  

Drought, as an extreme climate event, affects the ecological environment for vegetation and agricultural production. Studies of the vegetative response to drought are paramount to providing scientific information for drought risk mitigation. In this paper, the spatial-temporal pattern of drought and the response lag of vegetation in Nebraska were analyzed from 2000 to 2015. Based on the long-term Daymet data set, the standard precipitation index (SPI) was computed to identify precipitation anomalies, and the Gaussian function was applied to obtain temperature anomalies. Vegetation anomaly was identified by dynamic time warping technique using a remote sensing Normalized Difference Vegetation Index (NDVI) time series. Finally, multilayer correlation analysis was applied to obtain the response lag of different vegetation types. The results show that Nebraska suffered severe drought events in 2002 and 2012. The response lag of vegetation to drought typically ranged from 30 to 45 days varying for different vegetation types and human activities (water use and management). Grasslands had the shortest response lag (~35 days), while forests had the longest lag period (~48 days). For specific crop types, the response lag of winter wheat varied among different regions of Nebraska (35–45 days), while soybeans, corn and alfalfa had similar response lag times of approximately 40 days.


2012 ◽  
Vol 34 (1) ◽  
pp. 103 ◽  
Author(s):  
Z. M. Hu ◽  
S. G. Li ◽  
J. W. Dong ◽  
J. W. Fan

The spatial annual patterns of aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of the rangelands of the Inner Mongolia Autonomous Region of China, a region in which several projects for ecosystem restoration had been implemented, are described for the years 1998–2007. Remotely sensed normalised difference vegetation index and ANPP data, measured in situ, were integrated to allow the prediction of ANPP and PUE in each 1 km2 of the 12 prefectures of Inner Mongolia. Furthermore, the temporal dynamics of PUE and ANPP residuals, as indicators of ecosystem deterioration and recovery, were investigated for the region and each prefecture. In general, both ANPP and PUE were positively correlated with mean annual precipitation, i.e. ANPP and PUE were higher in wet regions than in arid regions. Both PUE and ANPP residuals indicated that the state of the rangelands of the region were generally improving during the period of 2000–05, but declined by 2007 to that found in 1999. Among the four main grassland-dominated prefectures, the recovery in the state of the grasslands in the Erdos and Chifeng prefectures was highest, and Xilin Gol and Chifeng prefectures was 2 years earlier than Erdos and Hunlu Buir prefectures. The study demonstrated that the use of PUE or ANPP residuals has some limitations and it is proposed that both indices should be used together with relatively long-term datasets in order to maximise the reliability of the assessments.


Sign in / Sign up

Export Citation Format

Share Document