scholarly journals Assessing the Effects of Spatial Scales on Regional Evapotranspiration Estimation by the SEBAL Model and Multiple Satellite Datasets: A Case Study in the Agro-Pastoral Ecotone, Northwestern China

2021 ◽  
Vol 13 (8) ◽  
pp. 1524
Author(s):  
Xuliang Li ◽  
Xuefeng Xu ◽  
Xuejin Wang ◽  
Shaoyuan Xu ◽  
Wei Tian ◽  
...  

Evapotranspiration (ET) estimation is important for understanding energy exchanges and water cycles. Remote sensing (RS) is the main method used to obtain ET data over large scales. However, owing to surface heterogeneities and different model algorithms, ET estimated from RS products with different spatial resolutions can cause significant uncertainties, whose causes need to be thoroughly analyzed. In this study, the Surface Energy Balance Algorithm for Land (SEBAL) model was selected to explore spatial resolution influences on ET simulations. Three satellite datasets (Landsat Thematic Mapper (TM), Moderate Resolution Imaging Spectroradiometer (MODIS), and Advanced Very High-Resolution Radiometer (AVHRR)) were selected to independently estimate ET in SEBAL model to identify the influence of the spatial scale on ET estimation, and analyze the effects and causes of scale aggregation. Results indicated that: (1) the spatial distributions of ET estimated from the three satellite datasets were similar, with the MODIS-based ET having the largest uncertainty; and (2) aggregating input parameters had limited changes in the net radiation and soil heat fluxes. However, errors in the sensible heat and latent heat fluxes were relatively larger, which were caused by changes in the selection of hot and cold pixels and the NDVI and surface albedo parameters during scale aggregation. The scale errors caused by the model mechanisms were larger than those caused by the land use/cover pattern in the SEBAL model. Overall, this study highlights the impact of spatial scale on ET and provides a better understanding of the scale aggregation effect on ET estimation by RS.

2009 ◽  
Vol 2 (5) ◽  
pp. 2707-2748 ◽  
Author(s):  
J. Joiner ◽  
A. P. Vasilkov ◽  
P. K. Bhartia ◽  
G. Wind ◽  
S. Platnick ◽  
...  

Abstract. The detection of multiple cloud layers using satellite observations is important for retrieval algorithms as well as climate applications. In this paper, we describe a relatively simple algorithm to detect multiple cloud layers and distinguish them from vertically-extended clouds. The algorithm can be applied to coincident passive sensors that derive both cloud-top pressure from the thermal infrared observations and an estimate of solar photon pathlength from UV, visible, or near-IR measurements. Here, we use data from the A-train afternoon constellation of satellites: cloud-top pressure, cloud optical thickness, and the multi-layer flag from the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) and the optical centroid cloud pressure from the Aura Ozone Monitoring Instrument (OMI). The cloud classification algorithms applied with different passive sensor configurations compare well with each other as well as with data from the A-train CloudSat radar. We compute monthly mean fractions of pixels containing multi-layer and vertically-extended clouds for January and July 2007 at the OMI spatial resolution (12 km×24 km at nadir) and at the 5 km×5 km MODIS resolution for infrared cloud retrievals. There are seasonal variations in the spatial distribution of the different cloud types. The fraction of pixels containing distinct multi-layer cloud is a strong function of the pixel size. Globally averaged, these fractions are approximately 20% and 5% for OMI and MODIS, respectively. These fractions may be significantly higher or lower depending upon location. There is a much smaller resolution dependence for fractions of pixels containing vertically-extended clouds (~20% for OMI and slightly less for MODIS globally), suggesting larger spatial scales for these clouds. We also find significantly higher fractions of vertically-extended clouds over land as compared with ocean, particularly in the tropics and summer hemisphere.


2010 ◽  
Vol 10 (23) ◽  
pp. 11459-11470 ◽  
Author(s):  
B. S. Grandey ◽  
P. Stier

Abstract. Analysing satellite datasets over large regions may introduce spurious relationships between aerosol and cloud properties due to spatial variations in aerosol type, cloud regime and synoptic regime climatologies. Using MODerate resolution Imaging Spectroradiometer data, we calculate relationships between aerosol optical depth τa derived liquid cloud droplet effective number concentration Ne and liquid cloud droplet effective radius re at different spatial scales. Generally, positive values of dlnNedlnτa are found for ocean regions, whilst negative values occur for many land regions. The spatial distribution of dlnredlnτa shows approximately the opposite pattern, with generally postive values for land regions and negative values for ocean regions. We find that for region sizes larger than 4° × 4°, spurious spatial variations in retrieved cloud and aerosol properties can introduce widespread significant errors to calculations of dlnNedlnτa and dlnredlnτa. For regions on the scale of 60° × 60°, these methodological errors may lead to an overestimate in global cloud albedo effect radiative forcing of order 80% relative to that calculated for regions on the scale of 1° × 1°.


2013 ◽  
Vol 30 (12) ◽  
pp. 2720-2736 ◽  
Author(s):  
Sirish Uprety ◽  
Changyong Cao ◽  
Xiaoxiong Xiong ◽  
Slawomir Blonski ◽  
Aisheng Wu ◽  
...  

Abstract On-orbit radiometric performance of the Suomi National Polar-Orbiting Partnership (Suomi-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) is studied using the extended simultaneous nadir overpass (SNO-x) approach. Unlike the traditional SNO analysis of data in the high latitudes, this study extends the analysis to the low latitudes—in particular, over desert and ocean sites with relatively stable and homogeneous radiometric properties—for intersatellite comparisons. This approach utilizes a pixel-by-pixel match with an efficient geospatial matching algorithm to map VIIRS data into the Moderate Resolution Imaging Spectroradiometer (MODIS). VIIRS moderate-resolution bands M-1 through M-8 are compared with Aqua MODIS equivalent bands to quantify radiometric bias over the North African desert and over the ocean. Biases exist between VIIRS and MODIS in several bands, primarily because of spectral differences as well as possible calibration uncertainties, residual cloud contamination, and bidirectional reflectance distribution function (BRDF). The impact of spectral differences on bias is quantified by using the Moderate Resolution Atmospheric Transmission (MODTRAN) and hyperspectral measurements from the Earth Observing-1 (EO-1) Hyperion and the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS). After accounting for spectral differences and bias uncertainties, the VIIRS radiometric bias over desert agrees with MODIS measurements within 2% except for the VIIRS shortwave infrared (SWIR) band M-8, which indicates a nearly 3% bias. Over ocean, VIIRS agrees with MODIS within 2% by the end of January 2013 with uncertainty less than 1%. Furthermore, VIIRS bias relative to MODIS is also computed at the Antarctica Dome C site for validation and the result agrees well within 1% with the bias estimated using SNO-x over desert.


2014 ◽  
Vol 14 (19) ◽  
pp. 26003-26039 ◽  
Author(s):  
T. Thonat ◽  
C. Crevoisier ◽  
N. A. Scott ◽  
A. Chédin ◽  
R. Armante ◽  
...  

Abstract. Five years (July 2007–June 2012) of CO tropospheric columns derived from the IASI hyperspectral infrared sounder onboard Metop-A are used to study the impact of fires on the concentrations of CO in the mid-troposphere. Following Chédin et al. (2005, 2008), who showed the existence of a daily tropospheric excess of CO2 quantitatively related to fire emissions, we show that tropospheric CO also displays a diurnal signal with a seasonality that is in very good agreement with the seasonal evolution of fires given by GFED3.1 (Global Fire Emission Database) emissions and MODIS (Moderate Resolution Imaging Spectroradiometer) burned area. Unlike daytime or nighttime CO fields, which mix local emissions with nearby emissions transported to the region of study, the day-night difference of CO allows to highlight the CO signal due to local fire emissions. A linear relationship is found in the whole tropical region between CO fire emissions from the GFED3.1 inventory and the diurnal difference of IASI CO (R2 ~ 0.6). Based on the specificity of the two main phases of the combustion (flaming vs. smoldering) and on the vertical sensitivity of the sounder to CO, the following mechanism is proposed to explain such a CO diurnal signal: at night, after the passing of IASI at 9.30 p.m. LT, a large amount of CO emissions from the smoldering phase is trapped in the boundary layer before being uplifted the next morning by natural and pyro-convection up to the free troposphere, where it is seen by IASI at 9.30 a.m. LT. The results presented here highlight the need for developing complementary approaches to bottom-up emissions inventories and for taking into account the specificity of both the flaming and smoldering phases of fire emissions in order to fully take advantage of CO observations.


2013 ◽  
Vol 13 (15) ◽  
pp. 7895-7901 ◽  
Author(s):  
A. Arola ◽  
T. F. Eck ◽  
J. Huttunen ◽  
K. E. J. Lehtinen ◽  
A. V. Lindfors ◽  
...  

Abstract. The diurnal variability of aerosol optical depth (AOD) can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF) or aerosol direct radiative effect (ADRE). The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally. We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast) does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on 24 h ADRE was typically around 0.1–0.2 W m−2 (both positive and negative) in absolute values, 5–10% in relative ones.


2012 ◽  
Vol 5 (2) ◽  
pp. 389-396 ◽  
Author(s):  
T. Várnai ◽  
A. Marshak

Abstract. This paper aims at helping synergistic studies in combining data from different satellites for gaining new insights into two critical yet poorly understood aspects of anthropogenic climate change, aerosol-cloud interactions and aerosol radiative effects. In particular, the paper examines the way cloud information from the MODIS (MODerate resolution Imaging Spectroradiometer) imager can refine our perceptions based on CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar measurements about the systematic aerosol changes that occur near clouds. The statistical analysis of a yearlong dataset of co-located global maritime observations from the Aqua and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellites reveals that MODIS's multispectral imaging ability can greatly help the interpretation of CALIOP observations. The results show that imagers on Aqua and CALIPSO yield very similar pictures, and that the discrepancies – due mainly to wind drift and differences in view angle – do not significantly hinder aerosol measurements near clouds. By detecting clouds outside the CALIOP track, MODIS reveals that clouds are usually closer to clear areas than CALIOP data alone would suggest. The paper finds statistical relationships between the distances to clouds in MODIS and CALIOP data, and proposes a rescaling approach to statistically account for the impact of clouds outside the CALIOP track even when MODIS cannot reliably detect low clouds, for example at night or over sea ice. Finally, the results show that the typical distance to clouds depends on both cloud coverage and cloud type, and accordingly varies with location and season. In maritime areas perceived cloud free, the global median distance to clouds below 3 km altitude is in the 4–5 km range.


2016 ◽  
Vol 16 (5) ◽  
pp. 1451-1466 ◽  
Author(s):  
Yuchao Zhang ◽  
Ronghua Ma ◽  
Hongtao Duan ◽  
Steven Loiselle ◽  
Jinduo Xu

A long-term satellite-based analysis was performed to assess the impact of environmental factors on cyanobacterial harmful blooms (CyanoHABs) dynamics in a typical shallow lake, Lake Taihu. A sub-pixel approach (algae pixel-growing algorithm) was used with 13 years of MOderate-resolution Imaging Spectroradiometer (MODIS) data to evaluate changes in bloom extension, initiation date, duration, and occurrence frequency before and after a massive bloom event (2007). Results indicated that the conditions after this event changed, with a general delay in bloom initiation and a reduction in bloom duration. The environmental drivers of daily, monthly and inter-annual CyanoHABs dynamics were analyzed by detrended correspondence analysis, principal components analysis and redundancy analysis. This demonstrated that wind speed was the main driver for daily CyanoHABs dynamics, and CODmn, total phosphorus and water temperature were closely related to monthly CyanoHABs dynamics. For the year scale, Tmean and nutrients were the main drivers of CyanoHABs initiation date and duration, and meteorological factors influenced CyanoHABs frequency for the whole lake. Regular monitoring of CyanoHABs by remote sensing has become a key element in the continued assessment of bloom conditions in Lake Taihu, and nutrient reduction policies contribute to decrease CyanoHABs occurrence.


2019 ◽  
Vol 11 (3) ◽  
pp. 257 ◽  
Author(s):  
David Frantz ◽  
Marion Stellmes ◽  
Patrick Hostert

Analysis Ready Data (ARD) have undergone the most relevant pre-processing steps to satisfy most user demands. The freely available software FORCE (Framework for Operational Radiometric Correction for Environmental monitoring) is capable of generating Landsat ARD. An essential step of generating ARD is atmospheric correction, which requires water vapor data. FORCE relies on a water vapor database obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS). However, two major drawbacks arise from this strategy: (1) The database has to be compiled for each study area prior to generating ARD; and (2) MODIS and Landsat commissioning dates are not well aligned. We have therefore compiled an application-ready global water vapor database to significantly increase the operational readiness of ARD production. The free dataset comprises daily water vapor data for February 2000 to July 2018 as well as a monthly climatology that is used if no daily value is available. We systematically assessed the impact of using this climatology on surface reflectance outputs. A global random sample of Landsat 5/7/8 imagery was processed twice (i) using daily water vapor (reference) and (ii) using the climatology (estimate), followed by computing accuracy, precision, and uncertainty (APU) metrics. All APU measures were well below specification, thus the fallback usage of the climatology is generally a sound strategy. Still, the tests revealed that some considerations need to be taken into account to help quantify which sensor, band, climate, and season are most or least affected by using a fallback climatology. The highest uncertainty and bias is found for Landsat 5, with progressive improvements towards newer sensors. The bias increases from dry to humid climates, whereas uncertainty increases from dry and tropic to temperate climates. Uncertainty is smallest during seasons with low variability, and is highest when atmospheric conditions progress from a dry to a wet season (and vice versa).


2012 ◽  
Vol 5 (2) ◽  
pp. 2795-2820 ◽  
Author(s):  
P. R. Colarco ◽  
L. A. Remer ◽  
R. A. Kahn ◽  
R. C. Levy ◽  
E. J. Welton

Abstract. We assess the impact of swath width on the statistics of aerosol optical thickness (AOT) retrieved by satellite, as inferred from observations made by the Moderate Resolution Imaging Spectroradiometer (MODIS). Using collocated AERONET sun photometer observations we develop a correction to the MODIS data to account for calibration and algorithmic view angle dependency in the retrieved AOT. We sub-sample and correct the AOT data from the MODIS Aqua instrument along several candidate swaths of various widths for the years 2003–2011. We find that over ocean the global, annual mean AOT is within ± 0.01 of the full swath AOT for all of our sub-samples. Over land, however, most of our sub-samples are outside of this criterion range in the global, annual mean. Moreover, at smaller spatial and temporal scales we find wide deviation in the sub-sample AOT relative to the full swath over both land and ocean. In all, the sub-sample AOT is within ± 0.01 of the full swath value less than 25% of the time over land, and less than 50% of the time over ocean (less than 35% for all but the widest of our sub-sample swaths). These results suggest that future aerosol satellite missions having only narrow swath views may not sample the true AOT distribution sufficiently to reduce significantly the uncertainty in aerosol direct forcing of climate.


Sign in / Sign up

Export Citation Format

Share Document