scholarly journals Evaluating the Performance of Hyperspectral Leaf Reflectance to Detect Water Stress and Estimation of Photosynthetic Capacities

2021 ◽  
Vol 13 (11) ◽  
pp. 2160
Author(s):  
Jing-Jing Zhou ◽  
Ya-Hao Zhang ◽  
Ze-Min Han ◽  
Xiao-Yang Liu ◽  
Yong-Feng Jian ◽  
...  

Advanced techniques capable of early, rapid, and nondestructive detection of the impacts of drought on fruit tree and the measurement of the underlying photosynthetic traits on a large scale are necessary to meet the challenges of precision farming and full prediction of yield increases. We tested the application of hyperspectral reflectance as a high-throughput phenotyping approach for early identification of water stress and rapid assessment of leaf photosynthetic traits in citrus trees by conducting a greenhouse experiment. To this end, photosynthetic CO2 assimilation rate (Pn), stomatal conductance (Cond) and transpiration rate (Trmmol) were measured with gas-exchange approaches alongside measurements of leaf hyperspectral reflectance from citrus grown across a gradient of soil drought levels six times, during 20 days of stress induction and 13 days of rewatering. Water stress caused Pn, Cond, and Trmmol rapid and continuous decline throughout the entire drought period. The upper layer was more sensitive to drought than middle and lower layers. Water stress could also bring continuous and dynamic changes of the mean spectral reflectance and absorptance over time. After trees were rewatered, these differences were not obvious. The original reflectance spectra of the four water stresses were surprisingly of low diversity and could not track drought responses, whereas specific hyperspectral spectral vegetation indices (SVIs) and absorption features or wavelength position variables presented great potential. The following machine-learning algorithms: random forest (RF), support vector machine (SVM), gradient boost (GDboost), and adaptive boosting (Adaboost) were used to develop a measure of photosynthesis from leaf reflectance spectra. The performance of four machine-learning algorithms were assessed, and RF algorithm yielded the highest predictive power for predicting photosynthetic parameters (R2 was 0.92, 0.89, and 0.88 for Pn, Cond, and Trmmol, respectively). Our results indicated that leaf hyperspectral reflectance is a reliable and stable method for monitoring water stress and yield increase, with great potential to be applied in large-scale orchards.


Author(s):  
Junggu Choi ◽  
Seoyoung Cho ◽  
Inhwan Ko ◽  
Sanghoon Han

Investigating suicide risk factors is critical for socioeconomic and public health, and many researchers have tried to identify factors associated with suicide. In this study, the risk factors for suicidal ideation were compared, and the contributions of different factors to suicidal ideation and attempt were investigated. To reflect the diverse characteristics of the population, the large-scale and longitudinal dataset used in this study included both socioeconomic and clinical variables collected from the Korean public. Three machine learning algorithms (XGBoost classifier, support vector classifier, and logistic regression) were used to detect the risk factors for both suicidal ideation and attempt. The importance of the variables was determined using the model with the best classification performance. In addition, a novel risk-factor score, calculated from the rank and importance scores of each variable, was proposed. Socioeconomic and sociodemographic factors showed a high correlation with risks for both ideation and attempt. Mental health variables ranked higher than other factors in suicidal attempts, posing a relatively higher suicide risk than ideation. These trends were further validated using the conditions from the integrated and yearly dataset. This study provides novel insights into suicidal risk factors for suicidal ideations and attempts.



2018 ◽  
Vol 10 (10) ◽  
pp. 1522 ◽  
Author(s):  
Gina Leonita ◽  
Monika Kuffer ◽  
Richard Sliuzas ◽  
Claudio Persello

The survey-based slum mapping (SBSM) program conducted by the Indonesian government to reach the national target of “cities without slums” by 2019 shows mapping inconsistencies due to several reasons, e.g., the dependency on the surveyor’s experiences and the complexity of the slum indicators set. By relying on such inconsistent maps, it will be difficult to monitor the national slum upgrading program’s progress. Remote sensing imagery combined with machine learning algorithms could support the reduction of these inconsistencies. This study evaluates the performance of two machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF), for slum mapping in support of the slum mapping campaign in Bandung, Indonesia. Recognizing the complexity in differentiating slum and formal areas in Indonesia, the study used a combination of spectral, contextual, and morphological features. In addition, sequential feature selection (SFS) combined with the Hilbert–Schmidt independence criterion (HSIC) was used to select significant features for classifying slums. Overall, the highest accuracy (88.5%) was achieved by the SVM with SFS using contextual, morphological, and spectral features, which is higher than the estimated accuracy of the SBSM. To evaluate the potential of machine learning-based slum mapping (MLBSM) in support of slum upgrading programs, interviews were conducted with several local and national stakeholders. Results show that local acceptance for a remote sensing-based slum mapping approach varies among stakeholder groups. Therefore, a locally adapted framework is required to combine ground surveys with robust and consistent machine learning methods, for being able to deal with big data, and to allow the rapid extraction of consistent information on the dynamics of slums at a large scale.



CONVERTER ◽  
2021 ◽  
pp. 696-706
Author(s):  
Huichao Mi

Under the influence of COVID-19, minor enterprises, especially the manufacturing industry, are facing greater financial pressure and the possibility of non-performing loans is increasing. It is very important for financial institutions to reduce financial risks while providing financial support for minor enterprises to promote industrial development and economic recovery. In order to understand the function of machine learning algorithms in predicting enterprise credit risk, the research designs five models, including Logistic Regression, Decision Tree, Naïve Bayesian, Support Vector Machine and Deep Neural Network, and adopts SMOTE and Undersampling to process imbalanced data. Experiments show that machine learning algorithms have high accuracy for both large-scale data and small-scale data.



Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 368 ◽  
Author(s):  
Rei Sonobe ◽  
Yuhei Hirono ◽  
Ayako Oi

Tea trees are kept in shaded locations to increase their chlorophyll content, which influences green tea quality. Therefore, monitoring change in chlorophyll content under low light conditions is important for managing tea trees and producing high-quality green tea. Hyperspectral remote sensing is one of the most frequently used methods for estimating chlorophyll content. Numerous studies based on data collected under relatively low-stress conditions and many hyperspectral indices and radiative transfer models show that shade-grown tea performs poorly. The performance of four machine learning algorithms—random forest, support vector machine, deep belief nets, and kernel-based extreme learning machine (KELM)—in evaluating data collected from tea leaves cultivated under different shade treatments was tested. KELM performed best with a root-mean-square error of 8.94 ± 3.05 μg cm−2 and performance to deviation values from 1.70 to 8.04 for the test data. These results suggest that a combination of hyperspectral reflectance and KELM has the potential to trace changes in the chlorophyll content of shaded tea leaves.



2021 ◽  
Author(s):  
Jing-Jing Zhou ◽  
Ya-Hao Zhang ◽  
Ze-Min Han ◽  
Xiao-Yang Liu ◽  
Yong-Feng Jian ◽  
...  

AbstractObtaining variation in water use and photosynthetic capacity is a promising route toward yield increases, but it is still too laborious for large-scale rapid monitoring and prediction. We tested the application of hyperspectral reflectance as a high-throughput phenotyping approach for early identification of water stress and rapid assessment of leaf photosynthetic traits in citrus trees. To this end, photosynthetic CO2 assimilation rate (Pn), stomatal conductance (Cond) and transpiration rate (Trmmol) were measured with gas-exchange approaches alongside measurements of leaf hyperspectral reflectance from citrus grown across a gradient of soil drought levels. Water stress caused Pn, Cond and Trmmol rapid and continuous decreases in whole drought period. Upper layer was more sensitive to drought than middle and lower layers. Original reflectance spectra of three drought treatments were surprisingly of low diversity and could not track drought responses, whereas specific hyperspectral spectral vegetation indices (SVIs) and absorption features or wavelength position variables presented great potential. Performance of four machine learning algorithms were assessed and random forest (RF) algorithm yielded the highest predictive power for predicting photosynthetic parameters. Our results indicated that leaf hyperspectral reflectance was a reliable and stable method for monitoring water stress and yield increasing in large-scale orchards.HighlightAn efficient and stable methods using hyperspectral features for early and pre-visual identification of drought and machine learning techniques for predicting photosynthetic capacity.



Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4324
Author(s):  
Moaed A. Abd ◽  
Rudy Paul ◽  
Aparna Aravelli ◽  
Ou Bai ◽  
Leonel Lagos ◽  
...  

Multifunctional flexible tactile sensors could be useful to improve the control of prosthetic hands. To that end, highly stretchable liquid metal tactile sensors (LMS) were designed, manufactured via photolithography, and incorporated into the fingertips of a prosthetic hand. Three novel contributions were made with the LMS. First, individual fingertips were used to distinguish between different speeds of sliding contact with different surfaces. Second, differences in surface textures were reliably detected during sliding contact. Third, the capacity for hierarchical tactile sensor integration was demonstrated by using four LMS signals simultaneously to distinguish between ten complex multi-textured surfaces. Four different machine learning algorithms were compared for their successful classification capabilities: K-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), and neural network (NN). The time-frequency features of the LMSs were extracted to train and test the machine learning algorithms. The NN generally performed the best at the speed and texture detection with a single finger and had a 99.2 ± 0.8% accuracy to distinguish between ten different multi-textured surfaces using four LMSs from four fingers simultaneously. The capability for hierarchical multi-finger tactile sensation integration could be useful to provide a higher level of intelligence for artificial hands.



Author(s):  
Pratyush Kaware

In this paper a cost-effective sensor has been implemented to read finger bend signals, by attaching the sensor to a finger, so as to classify them based on the degree of bent as well as the joint about which the finger was being bent. This was done by testing with various machine learning algorithms to get the most accurate and consistent classifier. Finally, we found that Support Vector Machine was the best algorithm suited to classify our data, using we were able predict live state of a finger, i.e., the degree of bent and the joints involved. The live voltage values from the sensor were transmitted using a NodeMCU micro-controller which were converted to digital and uploaded on a database for analysis.



2018 ◽  
Vol 7 (2.8) ◽  
pp. 684 ◽  
Author(s):  
V V. Ramalingam ◽  
Ayantan Dandapath ◽  
M Karthik Raja

Heart related diseases or Cardiovascular Diseases (CVDs) are the main reason for a huge number of death in the world over the last few decades and has emerged as the most life-threatening disease, not only in India but in the whole world. So, there is a need of reliable, accurate and feasible system to diagnose such diseases in time for proper treatment. Machine Learning algorithms and techniques have been applied to various medical datasets to automate the analysis of large and complex data. Many researchers, in recent times, have been using several machine learning techniques to help the health care industry and the professionals in the diagnosis of heart related diseases. This paper presents a survey of various models based on such algorithms and techniques andanalyze their performance. Models based on supervised learning algorithms such as Support Vector Machines (SVM), K-Nearest Neighbour (KNN), NaïveBayes, Decision Trees (DT), Random Forest (RF) and ensemble models are found very popular among the researchers.



Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3532 ◽  
Author(s):  
Nicola Mansbridge ◽  
Jurgen Mitsch ◽  
Nicola Bollard ◽  
Keith Ellis ◽  
Giuliana Miguel-Pacheco ◽  
...  

Grazing and ruminating are the most important behaviours for ruminants, as they spend most of their daily time budget performing these. Continuous surveillance of eating behaviour is an important means for monitoring ruminant health, productivity and welfare. However, surveillance performed by human operators is prone to human variance, time-consuming and costly, especially on animals kept at pasture or free-ranging. The use of sensors to automatically acquire data, and software to classify and identify behaviours, offers significant potential in addressing such issues. In this work, data collected from sheep by means of an accelerometer/gyroscope sensor attached to the ear and collar, sampled at 16 Hz, were used to develop classifiers for grazing and ruminating behaviour using various machine learning algorithms: random forest (RF), support vector machine (SVM), k nearest neighbour (kNN) and adaptive boosting (Adaboost). Multiple features extracted from the signals were ranked on their importance for classification. Several performance indicators were considered when comparing classifiers as a function of algorithm used, sensor localisation and number of used features. Random forest yielded the highest overall accuracies: 92% for collar and 91% for ear. Gyroscope-based features were shown to have the greatest relative importance for eating behaviours. The optimum number of feature characteristics to be incorporated into the model was 39, from both ear and collar data. The findings suggest that one can successfully classify eating behaviours in sheep with very high accuracy; this could be used to develop a device for automatic monitoring of feed intake in the sheep sector to monitor health and welfare.



Sign in / Sign up

Export Citation Format

Share Document