scholarly journals Bora Flow Characteristics in a Complex Valley Environment

2021 ◽  
Vol 13 (21) ◽  
pp. 4363
Author(s):  
Marija Bervida ◽  
Samo Stanič ◽  
Griša Močnik ◽  
Longlong Wang ◽  
Klemen Bergant ◽  
...  

This paper complements the existing studies of Bora flow properties in the Vipava valley with the study of Bora turbulence in a lower region of the troposphere. The turbulence characteristics of Bora flow were derived from high resolution Doppler wind lidar measurements during eight Bora wind episodes that occurred in November and December 2019. Based on the vertical profiles of wind velocity, from 80 to 180 m above the valley floor, the turbulence intensity related to all three spatial directions and the along-wind integral length scales related to three velocity components were evaluated and compared to the approximations given in international standards. The resulting turbulence characteristics of Bora flow in a deep mountain valley exhibited interesting behaviour, differing from the one expected and suggested by standards. The intensity of turbulence during Bora episodes was found to be quite strong, especially regarding the expected values for that particular category of terrain. The specific relationship between along-wind, lateral and vertical intensity was evaluated as well. The scales of turbulence in the along-wind direction were found to vary widely between different Bora episodes and were rather different from the approximations given by standards, with the most significant deviations observed for the along-wind length scale of the vertical velocity component. Finally, the periodicity of flow structures above the valley was assessed, yielding a wide range of possible periods between 1 and 10 min, thus confirming some of the previous observations from the studies of Bora in the Vipava valley.

2021 ◽  
Vol 13 (4) ◽  
pp. 1547-1560
Author(s):  
Yves Tramblay ◽  
Nathalie Rouché ◽  
Jean-Emmanuel Paturel ◽  
Gil Mahé ◽  
Jean-François Boyer ◽  
...  

Abstract. The African continent is probably the one with the lowest density of hydrometric stations currently measuring river discharge despite the fact that the number of operating stations was quite important until the 1970s. This new African Database of Hydrometric Indices (ADHI) provides a wide range of hydrometric indices and hydrological signatures computed from different sources of data after a quality control. It includes 1466 stations with at least 10 years of daily discharge data over the period 1950–2018. The average record length is 33 years, and 131 stations have complete records over 50 years. With this new dataset spanning most climatic regions of the African continent, several hydrometric indices have been computed, representing mean flow characteristics and extremes (low flows and floods), and are accessible to the scientific community. The database will be updated on a regular basis to include more hydrometric stations and longer time series of river discharge. The ADHI is available for download at: https://doi.org/10.23708/LXGXQ9 (Tramblay and Rouché, 2020).


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1178
Author(s):  
Zhenru Shu ◽  
Qiusheng Li ◽  
Yuncheng He ◽  
Pak Wai Chan

A proper understanding of marine wind characteristics is of essential importance across a wide range of engineering applications. While the offshore wind speed and turbulence characteristics have been examined extensively, the knowledge of wind veer (i.e., turning of wind with height) is much less understood and discussed. This paper presents an investigation of marine wind field with particular emphasis on wind veer characteristics. Extensive observations from a light detection and ranging (Lidar) system at an offshore platform in Hong Kong were examined to characterize the wind veer profiles up to a height of 180 m. The results underscored the occurrence of marine wind veer, with a well-defined two-fold vertical structure. The observed maximum wind veer angle exhibits a reverse correlation with mean wind speed, which decreases from 2.47° to 0.59° for open-sea terrain, and from 7.45° to 1.92° for hilly terrain. In addition, seasonal variability of wind veer is apparent, which is most pronounced during spring and winter due to the frequent occurrence of the low-level jet. The dependence of wind veer on atmospheric stability is evident, particularly during winter and spring. In general, neutral stratification reveals larger values of wind veer angle as compared to those in stable and unstable stratification conditions.


Author(s):  
Ahmed H. Kamel ◽  
Ahmed Alzahabi

Abstract Surfactant-based, SB fluids exhibit complex rheological behavior due to substantial structural changes caused by the molecules self-assembled colloidal aggregation. Temperature and salinity affect their rheology and flow properties. In this study, both rheological and viscoelastic properties for the optimum concentration, 4%, of Aromox® APA-T viscoelastic surfactant (VES) were investigated using two brine solutions; 2 and 4% KCl and wide range of temperatures (72°F – 200°F). Flow properties were examined using a 1/2-in. straight and coiled tubing (CR = 0.019). The results show that increasing solution salinity promotes formation of rod-like micelles and increases its flexibility. Salinity affects micelles growth and their rheological and viscoelastic behavior is very sensitive to the nature and structure of the added salt. Different molecular structures are formed; spherical micelles occur first and then increased temperature and/or salinity promotes the formation of rod-like micelles. Later, rod-like micelles are aligned in the flow direction and form a large super ordered structure of micellar bundles or aggregates called shear induced structure (SIS). Different structures implies different rheological and flow properties. Likewise, rheology improves with increasing temperature up to 100°F. Further increase in temperature reverses the effects and viscosity decreases. In addition, drag reduction and flow characteristics of SB fluids are improved by the addition of salt and/or increasing temperature up to 100°F. Results obtained are in full agreement with rheological and viscoelastic behavior of SB fluids for both salinity and temperature.


Author(s):  
Othmane Zine ◽  
Aziz Derouich ◽  
Abdennebi Talbi

It has been proven that adopting the “one size fits one” approach has better learning outcomes than the “one size fits all” one. A customized learning experience is attainable with the use of learner models, the main source of variability, in adaptive educational hypermedia systems or any intelligent learning environment. While such a model includes a large number of characteristics which can be difficult to incorporate and use, several standards that were developed to overcome these complexities. In this paper, the proposed work intents to improve learner’s model representation to meet the requirements and needs of adaptation. We took IMS-LIP, IMS-ACCLIP and IMS-RDCEO standards into consideration and incorporated their characteristics to our proposed learner model so that it conforms to international standards. Moreover, the suggested learner model takes advantage of the semantic web technologies that offer a better data organization, indexing and management and ensures the reusability, the interoperability and the extensibility of this model. Furthermore, due to the use of ontologies, the metadata about a learner can be used by a wide range of personalization techniques to provide more accurate customization.


Author(s):  
Nicola Molinari ◽  
Jonathan P. Mailoa ◽  
Boris Kozinsky

We show that strong cation-anion interactions in a wide range of lithium-salt/ionic liquid mixtures result in a negative lithium transference number, using molecular dynamics simulations and rigorous concentrated solution theory. This behavior fundamentally deviates from the one obtained using self-diffusion coefficient analysis and agrees well with experimental electrophoretic NMR measurements, which accounts for ion correlations. We extend these findings to several ionic liquid compositions. We investigate the degree of spatial ionic coordination employing single-linkage cluster analysis, unveiling asymmetrical anion-cation clusters. Additionally, we formulate a way to compute the effective lithium charge that corresponds to and agrees well with electrophoretic measurements and show that lithium effectively carries a negative charge in a remarkably wide range of chemistries and concentrations. The generality of our observation has significant implications for the energy storage community, emphasizing the need to reconsider the potential of these systems as next generation battery electrolytes.<br>


2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Marine Vekua

The main goal of this research is to determine whether the journalism education of the leading media schools inGeorgia is adequate to modern media market’s demands and challenges. The right answer to this main questionwas found after analyzing Georgian media market’s demands, on the one hand, and, on the other hand, differentaspects of journalism education in Georgia: the historical background, development trends, evaluation ofeducational programs and curricula designs, reflection of international standards in teaching methods, studyingand working conditions.


2021 ◽  
Vol 11 (14) ◽  
pp. 6319
Author(s):  
Sung-Woong Choi ◽  
Hyoung-Seock Seo ◽  
Han-Sang Kim

In the present study, the flow characteristics of butterfly valves with different sizes DN 80 (nominal diameter: 76.2 mm), DN 262 (nominal diameter: 254 mm), DN 400 (nominal diameter: 406 mm) were numerically investigated under different valve opening percentages. Representative two-equation turbulence models of two-equation k-epsilon model of Launder and Sharma, two-equation k-omega model of Wilcox, and two-equation k-omega SST model of Menter were selected. Flow characteristics of butterfly valves were examined to determine turbulence model effects. It was determined that increasing turbulence effect could cause many discrepancies between turbulence models, especially in areas with large pressure drop and velocity increase. In addition, sensitivity analysis of flow properties was conducted to determine the effect of constants used in each turbulence model. It was observed that the most sensitive flow properties were turbulence dissipation rate (Epsilon) for the k-epsilon turbulence model and turbulence specific dissipation rate (Omega) for the k-omega turbulence model.


2021 ◽  
pp. 104973232199379
Author(s):  
Olaug S. Lian ◽  
Sarah Nettleton ◽  
Åge Wifstad ◽  
Christopher Dowrick

In this article, we qualitatively explore the manner and style in which medical encounters between patients and general practitioners (GPs) are mutually conducted, as exhibited in situ in 10 consultations sourced from the One in a Million: Primary Care Consultations Archive in England. Our main objectives are to identify interactional modes, to develop a classification of these modes, and to uncover how modes emerge and shift both within and between consultations. Deploying an interactional perspective and a thematic and narrative analysis of consultation transcripts, we identified five distinctive interactional modes: question and answer (Q&A) mode, lecture mode, probabilistic mode, competition mode, and narrative mode. Most modes are GP-led. Mode shifts within consultations generally map on to the chronology of the medical encounter. Patient-led narrative modes are initiated by patients themselves, which demonstrates agency. Our classification of modes derives from complete naturally occurring consultations, covering a wide range of symptoms, and may have general applicability.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 290
Author(s):  
Maxim Pyzh ◽  
Kevin Keiler ◽  
Simeon I. Mistakidis ◽  
Peter Schmelcher

We address the interplay of few lattice trapped bosons interacting with an impurity atom in a box potential. For the ground state, a classification is performed based on the fidelity allowing to quantify the susceptibility of the composite system to structural changes due to the intercomponent coupling. We analyze the overall response at the many-body level and contrast it to the single-particle level. By inspecting different entropy measures we capture the degree of entanglement and intraspecies correlations for a wide range of intra- and intercomponent interactions and lattice depths. We also spatially resolve the imprint of the entanglement on the one- and two-body density distributions showcasing that it accelerates the phase separation process or acts against spatial localization for repulsive and attractive intercomponent interactions, respectively. The many-body effects on the tunneling dynamics of the individual components, resulting from their counterflow, are also discussed. The tunneling period of the impurity is very sensitive to the value of the impurity-medium coupling due to its effective dressing by the few-body medium. Our work provides implications for engineering localized structures in correlated impurity settings using species selective optical potentials.


2021 ◽  
Vol 11 (8) ◽  
pp. 3397
Author(s):  
Gustavo Assunção ◽  
Nuno Gonçalves ◽  
Paulo Menezes

Human beings have developed fantastic abilities to integrate information from various sensory sources exploring their inherent complementarity. Perceptual capabilities are therefore heightened, enabling, for instance, the well-known "cocktail party" and McGurk effects, i.e., speech disambiguation from a panoply of sound signals. This fusion ability is also key in refining the perception of sound source location, as in distinguishing whose voice is being heard in a group conversation. Furthermore, neuroscience has successfully identified the superior colliculus region in the brain as the one responsible for this modality fusion, with a handful of biological models having been proposed to approach its underlying neurophysiological process. Deriving inspiration from one of these models, this paper presents a methodology for effectively fusing correlated auditory and visual information for active speaker detection. Such an ability can have a wide range of applications, from teleconferencing systems to social robotics. The detection approach initially routes auditory and visual information through two specialized neural network structures. The resulting embeddings are fused via a novel layer based on the superior colliculus, whose topological structure emulates spatial neuron cross-mapping of unimodal perceptual fields. The validation process employed two publicly available datasets, with achieved results confirming and greatly surpassing initial expectations.


Sign in / Sign up

Export Citation Format

Share Document