scholarly journals An Ultra-Wideband Frequency System for Non-Destructive Root Imaging

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2438 ◽  
Author(s):  
Thomas Truong ◽  
Anh Dinh ◽  
Khan Wahid

Understanding the root system architecture of plants as they develop is critical for increasing crop yields through plant phenotyping, and ultra-wideband imaging systems have shown potential as a portable, low-cost solution to non-destructive imaging root system architectures. This paper presents the design, implementation, and analysis of an ultra-wideband imaging system for use in imaging potted plant root system architectures. The proposed system is separated into three main subsystems: a Data Acquisition module, a Data Processing module, and an Image Processing and Analysis module. The Data Acquisition module consists of simulated and experimental implementations of a non-contact synthetic aperture radar system to measure ultra-wideband signal reflections from concealed scattering objects in a pot containing soil. The Data Processing module is responsible for interpreting the measured ultra-wideband signals and producing an image using a delay-and-sum beamforming algorithm. The Image Processing and Analysis module is responsible for improving image quality and measuring root depth and average root diameter in an unsupervised manner. The Image Processing and Analysis module uses a modified top-hat transformation alongside quantization methods based on energy distributions in the image to isolate the surface of the imaged root. Altogether, the proposed subsystems are capable of imaging and measuring concealed taproot system architectures with controlled soil conditions; however, the performance of the system is highly dependent on knowledge of the soil conditions. Smaller roots in difficult imaging conditions require future work into understanding and compensating for unwanted noise. Ultimately, this paper sought to provide insight into improving imaging quality of ultra-wideband (UWB) imaging systems for plant root imaging for other works to be followed.

Author(s):  
Naveen Kumar Mahanti ◽  
R. Pandiselvam ◽  
Anjineyulu Kothakota ◽  
Padma Ishwarya ◽  
Subir Kumar Chakraborty ◽  
...  

2020 ◽  
Vol 33 (1) ◽  
pp. 100-107
Author(s):  
AIRTON MARQUES DE CARVALHO ◽  
LUIZ DIEGO VIDAL SANTOS ◽  
FRANCISCO SANDRO RODRIGUES HOLANDA ◽  
ALCEU PEDROTTI ◽  
GUILHERME MATOS ANTONIO

ABSTRACT The characterization of the plant root system is of great importance for the understanding of its contribution to soil shear resistance, constituting an important tool for decision making in soil bioengineering works. The objective of this work was to evaluate the growth and distribution characteristics of the root system of Paspalum millegrana Schrad. grass in Entisol using Digital Imaging Processing (DIP). The data were obtained by opening a soil pit to expose the root system of Paspalum grass up to 1.70 m depth. The profile wall and volumetric ring methods were used to collect quantitative information of the root system. The SAFIRA software and the ArcMAP software belonging to the ArcGIS suite were used for image processing. The profile wall method showed that Paspalum grass has a large volume of roots in the first 0.40 m to 1.30 m soil depth. It was observed that the root length and volume of Paspalum grass reach depths beyond 1.70 m, which is important to increase soil resistance to erosion processes. The profile wall method when compared to the volumetric ring method proved to be more efficient to understand the behavior of the Paspalum grass root system since it enables an assessment of its spatial distribution with better detailing.


2017 ◽  
Vol 11 ◽  
Author(s):  
Elga Monaci ◽  
Serena Polverigiani ◽  
Davide Neri ◽  
Michele Bianchelli ◽  
Rodolfo Santilocchi ◽  
...  

Organic farming is claimed to improve soil fertility. Nonetheless, among organic practices, net C-inputs may largely vary in amount and composition and produce different soil conditions for microbial activity and plant-root system adaptation and development. In this study, we hypothesised that, in the regime of organic agriculture, soil chemical and biochemical properties can substantially differ under contrasting crop rotation systems and produce conditions of soil fertility to which the plant responds through diverse growth and production. The impact of 13 years of Alfalfa-Crop rotation (P-C) and Annual Crop rotation (A-C) was evaluated on the build up of soil organic carbon (SOC), active (light fraction organic matter, LFOM; water soluble organic carbon, WSOC) and humic fraction (fulvic acids carbon, FAC; humic acids carbon, HAC), soil biochemical properties (microbial biomass carbon, MBC; basal respiration, dBR; alkaline phosphatase AmP; arylsulfatase ArS; orto-diphenoloxidase, o-DPO) and the amount of available macro-nutrients (N, P, and S) at two different soil depths (0-10 cm and 10-30 cm) before and after cultivation of wheat. We also studied the response of root morphology, physiology and yield of the plant-root system of wheat. Results showed that the level of soil fertility and plant-root system behaviour substantially differed under the two crop rotation systems investigated here. We observed high efficiency of the P-C soil in the build up of soil organic carbon, as it was 2.9 times higher than that measured in the A-C soil. With the exception of o-DPO, P-C soil always showed a higher level of AmP and ArS activity and an initial lower amount of available P and S. The P-C soil showed higher rootability and promoted thinner roots and higher root density. In the P-C soil conditions, the photosynthesis and yield of durum wheat were also favoured. Finally, cultivation of wheat caused an overall depletion of the accrued fertility of soil, mainly evident in the P-C soil, which maintained a residual higher level of all the chemical and biochemical properties tested.


1996 ◽  
Author(s):  
Yoav Waisel ◽  
Bobbie McMichael ◽  
Amram Eshel

Architecture of a root system is the expression of the potential of various root types to branch, to grow and to coordinate with other plant organs, under the specific limitations of the environmental conditions. The present investigation has proven the following points. 1) Genotypes with different types of root systems were identified. The growth patterns of their roots and the distribution of laterals along their main axes were recorded. 2) The patterns of development of the root systems of four cotton genotypes, throughout the entire life cycle of the plants, were described, even at such a late stage of development when the total length of the roots exceeded two kilometers. To the best of our knowledge, this is the first time that an analysis of this type is accomplished. 3) The development of root systems under restrictive soil conditions were compared with those that have developed under the non-restrictive conditions of aeroponics. Results indicate that in the absence of the mechanical impedance of the soil, cotton plants develop single roots that reach the length of 6 m, and have a total root length of 2000 m. Thus, root growth is strongly inhibited by the soil, with some root types being inhibited more than others. 4) One of the important decisions, in constructing an operational root system architecture of mature plants, is the shift of the balance between various root fractions in favor of the very fine roots. 5) Root system architecture is determined, in part, by the sites of initiation of the lateral roots. This is determined genetically by the number of xylem archs and by the totuosity of the stele. Selection for such traits should be sought.


Plant Methods ◽  
2013 ◽  
Vol 9 (1) ◽  
pp. 8 ◽  
Author(s):  
Stefan Mairhofer ◽  
Susan Zappala ◽  
Saoirse Tracy ◽  
Craig Sturrock ◽  
Malcolm John Bennett ◽  
...  

2019 ◽  
Vol 16 (156) ◽  
pp. 20190293
Author(s):  
Clare Ziegler ◽  
Rosemary J. Dyson ◽  
Iain G. Johnston

Plant root systems play vital roles in the biosphere, environment and agriculture, but the quantitative principles governing their growth and architecture remain poorly understood. The ‘forward problem’ of what root forms can arise from given models and parameters has been well studied through modelling and simulation, but comparatively little attention has been given to the ‘inverse problem’: what models and parameters are responsible for producing an experimentally observed root system? Here, we propose the use of approximate Bayesian computation (ABC) to infer mechanistic parameters governing root growth and architecture, allowing us to learn and quantify uncertainty in parameters and model structures using observed root architectures. We demonstrate the use of this platform on synthetic and experimental root data and show how it may be used to identify growth mechanisms and characterize growth parameters in different mutants. Our highly adaptable framework can be used to gain mechanistic insight into the generation of observed root system architectures.


Author(s):  
Sebastian Brand ◽  
Matthias Petzold ◽  
Peter Czurratis ◽  
Peter Hoffrogge

Abstract In industrial manufacturing of microelectronic components, non-destructive failure analysis methods are required for either quality control or for providing a rapid fault isolation and defect localization prior to detailed investigations requiring target preparation. Scanning acoustic microscopy (SAM) is a powerful tool enabling the inspection of internal structures in optically opaque materials non-destructively. In addition, depth specific information can be employed for two- and three-dimensional internal imaging without the need of time consuming tomographic scan procedures. The resolution achievable by acoustic microscopy is depending on parameters of both the test equipment and the sample under investigation. However, if applying acoustic microscopy for pure intensity imaging most of its potential remains unused. The aim of the current work was the development of a comprehensive analysis toolbox for extending the application of SAM by employing its full potential. Thus, typical case examples representing different fields of application were considered ranging from high density interconnect flip-chip devices over wafer-bonded components to solder tape connectors of a photovoltaic (PV) solar panel. The progress achieved during this work can be split into three categories: Signal Analysis and Parametric Imaging (SA-PI), Signal Analysis and Defect Evaluation (SA-DE) and Image Processing and Resolution Enhancement (IP-RE). Data acquisition was performed using a commercially available scanning acoustic microscope equipped with several ultrasonic transducers covering the frequency range from 15 MHz to 175 MHz. The acoustic data recorded were subjected to sophisticated algorithms operating in time-, frequency- and spatial domain for performing signal- and image analysis. In all three of the presented applications acoustic microscopy combined with signal- and image processing algorithms proved to be a powerful tool for non-destructive inspection.


2020 ◽  
Vol 36 (1) ◽  
pp. 36-43
Author(s):  
I.O. Konovalova ◽  
T.N. Kudelina ◽  
S.O. Smolyanina ◽  
A.I. Lilienberg ◽  
T.N. Bibikova

A new technique for Arabidopsis thaliana cultivation has been proposed that combines the use of a phytogel-based nutrient medium and a hydrophilic membrane of hydrate cellulose film, separating the root system of the plant from the medium thickness. Growth rates of both main and lateral roots were faster in the plants cultivated on the surface of hydrate cellulose film than in the plants grown in the phytogel volume. The location of the root system on the surface of the transparent hydrate film simplifies its observation and analysis and facilitates plant transplantation with preservation of the root system configuration. The proposed technique allowed us to first assess the effect of exogenous auxin on the growth of lateral roots at the 5-6 developmental stage. methods to study plant root systems, hydrate cellulose film, A. thaliana, lateral roots, differential root growth rate, auxin The work was financially supported by the Russian Foundation for Basic Research (Project Bel_mol_a 19-54-04015) and the basic topic of the Russian Academy of Sciences - IBMP RAS «Regularities of the Influence of Extreme Environmental Factors on the Processes of Cultivation of Higher Plants and the Development of Japanese Quail Tissues at Different Stages of its Ontogenesis under the Conditions of Regenerative Life Support Systems».


Sign in / Sign up

Export Citation Format

Share Document