scholarly journals Towards Portable Nanophotonic Sensors

Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1715 ◽  
Author(s):  
Abdul Shakoor ◽  
James Grant ◽  
Marco Grande ◽  
David. R. S. Cumming

A range of nanophotonic sensors composed of different materials and device configurations have been developed over the past two decades. These sensors have achieved high performance in terms of sensitivity and detection limit. The size of onchip nanophotonic sensors is also small and they are regarded as a strong candidate to provide the next generation sensors for a range of applications including chemical and biosensing for point-of-care diagnostics. However, the apparatus used to perform measurements of nanophotonic sensor chips is bulky, expensive and requires experts to operate them. Thus, although integrated nanophotonic sensors have shown high performance and are compact themselves their practical applications are limited by the lack of a compact readout system required for their measurements. To achieve the aim of using nanophotonic sensors in daily life it is important to develop nanophotonic sensors which are not only themselves small, but their readout system is also portable, compact and easy to operate. Recognizing the need to develop compact readout systems for onchip nanophotonic sensors, different groups around the globe have started to put efforts in this direction. This review article discusses different works carried out to develop integrated nanophotonic sensors with compact readout systems, which are divided into two categories; onchip nanophotonic sensors with monolithically integrated readout and onchip nanophotonic sensors with separate but compact readout systems.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yehe Liu ◽  
Andrew M. Rollins ◽  
Richard M. Levenson ◽  
Farzad Fereidouni ◽  
Michael W. Jenkins

AbstractSmartphone microscopes can be useful tools for a broad range of imaging applications. This manuscript demonstrates the first practical implementation of Microscopy with Ultraviolet Surface Excitation (MUSE) in a compact smartphone microscope called Pocket MUSE, resulting in a remarkably effective design. Fabricated with parts from consumer electronics that are readily available at low cost, the small optical module attaches directly over the rear lens in a smartphone. It enables high-quality multichannel fluorescence microscopy with submicron resolution over a 10× equivalent field of view. In addition to the novel optical configuration, Pocket MUSE is compatible with a series of simple, portable, and user-friendly sample preparation strategies that can be directly implemented for various microscopy applications for point-of-care diagnostics, at-home health monitoring, plant biology, STEM education, environmental studies, etc.


2018 ◽  
Vol 28 (26) ◽  
pp. 1707161 ◽  
Author(s):  
Mohamed Shehata Draz ◽  
Maryam Moazeni ◽  
Manasa Venkataramani ◽  
Harini Lakshminarayanan ◽  
Ecem Saygili ◽  
...  

Biosensors ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 32 ◽  
Author(s):  
Beatriz Pérez-Fernández ◽  
Agustín Costa-García ◽  
Alfredo de la Escosura- Muñiz

Pesticides are among the most important contaminants in food, leading to important global health problems. While conventional techniques such as high-performance liquid chromatography (HPLC) and mass spectrometry (MS) have traditionally been utilized for the detection of such food contaminants, they are relatively expensive, time-consuming and labor intensive, limiting their use for point-of-care (POC) applications. Electrochemical (bio)sensors are emerging devices meeting such expectations, since they represent reliable, simple, cheap, portable, selective and easy to use analytical tools that can be used outside the laboratories by non-specialized personnel. Screen-printed electrodes (SPEs) stand out from the variety of transducers used in electrochemical (bio)sensing because of their small size, high integration, low cost and ability to measure in few microliters of sample. In this context, in this review article, we summarize and discuss about the use of SPEs as analytical tools in the development of (bio)sensors for pesticides of interest for food control. Finally, aspects related to the analytical performance of the developed (bio)sensors together with prospects for future improvements are discussed.


Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Jinmei Liu ◽  
Long Gu ◽  
Nuanyang Cui ◽  
Qi Xu ◽  
Yong Qin ◽  
...  

In the past decades, the progress of wearable and portable electronics is quite rapid, but the power supply has been a great challenge for their practical applications. Wearable power sources, especially wearable energy-harvesting devices, provide some possible solutions for this challenge. Among various wearable energy harvesters, the high-performance fabric-based triboelectric nanogenerators (TENGs) are particularly significant. In this review paper, we first introduce the fundamentals of TENGs and their four basic working modes. Then, we will discuss the material synthesis, device design, and fabrication of fabric-based TENGs. Finally, we try to give some problems that need to be solved for the further development of TENGs.


2017 ◽  
Vol 21 (6) ◽  
Author(s):  
Nikolaos Vasilakis ◽  
Konstantinos I. Papadimitriou ◽  
Hywel Morgan ◽  
Themistoklis Prodromakis

Author(s):  
Uyanga Ganbaatar ◽  
Changchun Liu

As the COVID-19 pandemic continues, people are becoming infected at an alarming rate, individuals are unknowingly spreading disease, and more lives are lost every day. There is an immediate need for a simple, rapid, early and sensitive point-of-care testing for COVID-19 disease. However, current testing approaches do not meet such need. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based detection methods have received substantial attention for nucleic acid-based molecular testing due to their simplicity, high sensitivity and specificity. This review explores the various CRISPR-based COVID-19 detection methods and related diagnostic devices. As with any emerging technology, CRISPR/Cas-based nucleic acid testing methods have several challenges that must be overcome for practical applications in clinics and hospitals. More importantly, these detection methods are not limited to COVID-19 but can be applied to detect any type of pathogen, virus, and fungi that may threaten humans, agriculture, and food industries in resource-limited settings. CRISPR/Cas-based detection methods have the potential to become simpler, more reliable, more affordable, and faster in the near future, which is highly important for achieving point-of-care diagnostics.


2020 ◽  
Author(s):  
Yehe Liu ◽  
Andrew M. Rollins ◽  
Richard M. Levenson ◽  
Farzad Fereidouni ◽  
Michael W. Jenkins

AbstractSmartphone microscopes can be effective tools for a broad range of imaging applications. In this manuscript, we demonstrate the first practical implementation of Microscopy with Ultraviolet Surface Excitation (MUSE) in a compact smartphone microscope called Pocket MUSE, resulting in a remarkably effective design. Fabricated with parts from consumer electronics that are readily available at low cost, the small optical module attaches directly over the rear lens in a smartphone and enables high quality multichannel fluorescence microscopy with submicron resolution over a 10X equivalent field of view. In addition to the novel optical configuration, Pocket MUSE is compatible with a series of simple, portable and user-friendly sample preparation strategies that can be directly implemented for various microscopy applications for point-of-care diagnostics, at-home health monitoring, plant biology, STEM education, environmental studies, etc.


2010 ◽  
Author(s):  
Domenico Giannone ◽  
Andrzej Kazmierczak ◽  
Fabian Dortu ◽  
Laurent Vivien ◽  
Hans Sohlström

Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1334 ◽  
Author(s):  
Yufa Feng ◽  
Jin Zhang ◽  
Huilong Ye ◽  
Liling Li ◽  
Huize Wang ◽  
...  

The catalytic hydrolysis of ammonia borane (AB) is a promising route to produce hydrogen for mobile hydrogen‒oxygen fuel cells. In this study, we have successfully synthesized a variety of Ni0.5Cu0.5Co2O4 nanocomposites with different morphology, including nanoplatelets, nanoparticles, and urchin-like microspheres. The catalytic performance of those Ni0.5Cu0.5Co2O4 composites in AB hydrolysis is investigated. The Ni0.5Cu0.5Co2O4 nanoplatelets show the best catalytic performance despite having the smallest specific surface area, with a turnover frequency (TOF) of 80.2 molhydrogen·min−1·mol−1cat. The results reveal that, in contrast to the Ni0.5Cu0.5Co2O4 nanoparticles and microspheres, the Ni0.5Cu0.5Co2O4 nanoplatelets are more readily reduced, leading to the fast formation of active species for AB hydrolysis. These findings provide some insight into the design of high-performance oxide-based catalysts for AB hydrolysis. Considering their low cost and high catalytic activity, Ni0.5Cu0.5Co2O4 nanoplatelets are a strong candidate catalyst for the production of hydrogen through AB hydrolysis in practical applications.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 139
Author(s):  
Premanshu Kumar Singh ◽  
Aarti Patel ◽  
Anastasia Kaffenes ◽  
Catherine Hord ◽  
Delaney Kesterson ◽  
...  

Advances in cancer research over the past half-century have clearly determined the molecular origins of the disease. Central to the use of molecular signatures for continued progress, including rapid, reliable, and early diagnosis is the use of biomarkers. Specifically, extracellular vesicles as biomarker cargo holders have generated significant interest. However, the isolation, purification, and subsequent analysis of these extracellular vesicles remain a challenge. Technological advances driven by microfluidics-enabled devices have made the challenges for isolation of extracellular vesicles an emerging area of research with significant possibilities for use in clinical settings enabling point-of-care diagnostics for cancer. In this article, we present a tutorial review of the existing microfluidic technologies for cancer diagnostics with a focus on extracellular vesicle isolation methods.


Sign in / Sign up

Export Citation Format

Share Document