scholarly journals An Electrical Capacitance Array for Imaging of Water Leakage inside Insulating Slabs with Porous Cells

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2514 ◽  
Author(s):  
Rui Li ◽  
Yi Li ◽  
Lihui Peng

The paper proposes a capacitance-sensor-array-based imaging system to detect water leakage inside insulating slabs with porous cells, such as anechoic acoustic rubber tiles. The modeling is conducted by using the finite element method to obtain the electrical potential distribution and sensitivity map with the proposed capacitance sensor array. An experimental test setup, which is composed of an eight-electrode capacitance sensor array and a commercialized capacitance bridge instrument for measurement, is developed. Experiments regarding different leakage scenarios are carried out by using the test setup. Preliminary results standing for different water leakage cases, which are based on the experimental data obtained from the test setup, are presented and depicted as images reconstructed by using different algorithms including the linear back projection (LBP), the projected Landweber iteration, and the total variation regularization. These results demonstrate that the proposed capacitance sensor array is feasible and has a great potential for imaging of water leakage inside insulating slabs with porous cells. A cost-effective capacitance measurement circuit for practical applications is also proposed and simulated.

Author(s):  
Sahana Apparsamy ◽  
Kamalanand Krishnamurthy

Soft tissues are non-homogeneous deformable structures having varied structural arrangements, constituents, and composition. This chapter explains the design of a capacitance sensor array for analyzing and imaging the non-homogeneity in biological materials. Further, tissue mimicking phantoms are developed using Agar-Agar and Polyacrylamide gels for testing the developed sensor. Also, the sensor employs an unsupervised learning algorithm for automated analysis of non-homogeneity. The reconstructed capacitance image can also be sensitive to topographical and morphological variations in the sample. The proposed method is further validated using a fiberoptic-based laser imaging system and the Jaccard index. In this chapter, the design of the sensor array for smart analysis of non-homogeneity along with significant results are presented in detail.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6354
Author(s):  
Aimi Aznan ◽  
Claudia Gonzalez Viejo ◽  
Alexis Pang ◽  
Sigfredo Fuentes

Rice quality assessment is essential for meeting high-quality standards and consumer demands. However, challenges remain in developing cost-effective and rapid techniques to assess commercial rice grain quality traits. This paper presents the application of computer vision (CV) and machine learning (ML) to classify commercial rice samples based on dimensionless morphometric parameters and color parameters extracted using CV algorithms from digital images obtained from a smartphone camera. The artificial neural network (ANN) model was developed using nine morpho-colorimetric parameters to classify rice samples into 15 commercial rice types. Furthermore, the ANN models were deployed and evaluated on a different imaging system to simulate their practical applications under different conditions. Results showed that the best classification accuracy was obtained using the Bayesian Regularization (BR) algorithm of the ANN with ten hidden neurons at 91.6% (MSE = <0.01) and 88.5% (MSE = 0.01) for the training and testing stages, respectively, with an overall accuracy of 90.7% (Model 2). Deployment also showed high accuracy (93.9%) in the classification of the rice samples. The adoption by the industry of rapid, reliable, and accurate methods, such as those presented here, may allow the incorporation of different morpho-colorimetric traits in rice with consumer perception studies.


2020 ◽  
Vol 4 (2) ◽  
pp. 152-155
Author(s):  
Luong Duy Thanh ◽  
Nguyen Canh Thai ◽  
Nguyen Manh Hung ◽  
Nguyen Cong Thang ◽  
Luong Thi Thanh Huong

The self-potential (SP) method is a passive, non-invasive and cost-effective geophysical method based on the measurement of electrical potential naturally occurring on the earth’s surface. One of the main causes for the electrical potential at the earth’s surface is water seepage under the ground. In this work, we perform the SP measurement on a small artificial earthen dam built at Thuyloi University. Our result shows that the selection of electrode types is crucial in the SP measurements. Namely, Cu/CuSO4 porous pots are much better than copper stake electrodes for the SP measurement. Additionally, it is shown that the SP measurement using suitable electrodes can be applied to detect underground water leakage and flow direction in the dam based on an anomaly and variation of electric potential with position on the survey area.


2021 ◽  
Vol 13 (15) ◽  
pp. 8421
Author(s):  
Yuan Gao ◽  
Jiandong Huang ◽  
Meng Li ◽  
Zhongran Dai ◽  
Rongli Jiang ◽  
...  

Uranium mining waste causes serious radiation-related health and environmental problems. This has encouraged efforts toward U(VI) removal with low cost and high efficiency. Typical uranium adsorbents, such as polymers, geopolymers, zeolites, and MOFs, and their associated high costs limit their practical applications. In this regard, this work found that the natural combusted coal gangue (CCG) could be a potential precursor of cheap sorbents to eliminate U(VI). The removal efficiency was modulated by chemical activation under acid and alkaline conditions, obtaining HCG (CCG activated with HCl) and KCG (CCG activated with KOH), respectively. The detailed structural analysis uncovered that those natural mineral substances, including quartz and kaolinite, were the main components in CCG and HCG. One of the key findings was that kalsilite formed in KCG under a mild synthetic condition can conspicuous enhance the affinity towards U(VI). The best equilibrium adsorption capacity with KCG was observed to be 140 mg/g under pH 6 within 120 min, following a pseudo-second-order kinetic model. To understand the improved adsorption performance, an adsorption mechanism was proposed by evaluating the pH of uranyl solutions, adsorbent dosage, as well as contact time. Combining with the structural analysis, this revealed that the uranyl adsorption process was mainly governed by chemisorption. This study gave rise to a utilization approach for CCG to obtain cost-effective adsorbents and paved a novel way towards eliminating uranium by a waste control by waste strategy.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1827
Author(s):  
Mengyao Li ◽  
Yu Zhang ◽  
Ting Zhang ◽  
Yong Zuo ◽  
Ke Xiao ◽  
...  

The cost-effective conversion of low-grade heat into electricity using thermoelectric devices requires developing alternative materials and material processing technologies able to reduce the currently high device manufacturing costs. In this direction, thermoelectric materials that do not rely on rare or toxic elements such as tellurium or lead need to be produced using high-throughput technologies not involving high temperatures and long processes. Bi2Se3 is an obvious possible Te-free alternative to Bi2Te3 for ambient temperature thermoelectric applications, but its performance is still low for practical applications, and additional efforts toward finding proper dopants are required. Here, we report a scalable method to produce Bi2Se3 nanosheets at low synthesis temperatures. We studied the influence of different dopants on the thermoelectric properties of this material. Among the elements tested, we demonstrated that Sn doping resulted in the best performance. Sn incorporation resulted in a significant improvement to the Bi2Se3 Seebeck coefficient and a reduction in the thermal conductivity in the direction of the hot-press axis, resulting in an overall 60% improvement in the thermoelectric figure of merit of Bi2Se3.


2015 ◽  
Vol 270 ◽  
pp. 10-19 ◽  
Author(s):  
Karol Asencio ◽  
W. Bramer-Escamilla ◽  
Gustavo Gutiérrez ◽  
Iván Sánchez

Nukleonika ◽  
2016 ◽  
Vol 61 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Irina V. Litovko ◽  
Alexy A. Goncharov ◽  
Andrew N. Dobrovolskiy ◽  
Lily V. Naiko ◽  
Irina V. Naiko

Abstract The paper presents new generation plasma optical devices based on the electrostatic plasma lens configuration that opens a novel attractive possibility for effective high-tech practical applications. Original approaches to use of plasma accelerators with closed electron drift and open walls for the creation of a cost-effective low-maintenance plasma lens with positive space charge and possible application for low-cost, low-energy rocket engine are described. The preliminary experimental, theoretical and simulation results are presented. It is noted that the presented plasma devices are attractive for many different applications in the state-of-the-art vacuum-plasma processing.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1393 ◽  
Author(s):  
Jie Cao ◽  
Jianbei Zhang ◽  
Yuejun Zhu ◽  
Shanshan Wang ◽  
Xiujun Wang ◽  
...  

The pollution of water resources has become a worldwide concern. The primary pollutants including insoluble oil, toxic dyes, and heavy metal ions. Herein, we report a polymer adsorbent, named SPCT, to remove the above three contaminants from water simultaneously. The preparation process of SPCT contains two steps. Firstly, a hydrogel composed of sulfonated phenolic resin (SMP) and polyethyleneimine (PEI) was synthesized using glutaraldehyde (GA) as the crosslinking agent, and the product was named SPG. Then SPCT was prepared by the reaction between SPG and citric acid (CA) at 170 ∘ C. SPCT exhibited an excellent performance for the removal of methylene blue (MB) and Cu(II) from aqueous solution. For a solution with a pollutant concentration of 50 mg L−1, a removal efficiency of above 90% could be obtained with a SPCT dosage of 0.2 g L−1 for MB, or a SPCT dosage of 0.5 g L−1 for Cu(II), respectively. SPCT also presented an interesting wettability. In air, it was both superhydrophilic and superoleophilic, and it was superoleophobic underwater. Therefore, SPCT could successfully separate oil-in-water emulsion with high separation efficiency and resistance to oil fouling. Additionally, SPCT was easily regenerated by using dilute HCl solution as an eluent. The outstanding performance of SPCT and the efficient, cost-effective preparation process highlight its potential for practical applications.


Author(s):  
S. Kolokytha ◽  
R. Speller ◽  
S. Robson

This study describes a cost-effective check-in baggage screening system, based on "on-belt tomosynthesis" (ObT) and close-range photogrammetry, that is designed to address the limitations of the most common system used, conventional projection radiography. The latter's limitations can lead to loss of information and an increase in baggage handling time, as baggage is manually searched or screened with more advanced systems. This project proposes a system that overcomes such limitations creating a cost-effective automated pseudo-3D imaging system, by combining x-ray and optical imaging to form digital tomograms. Tomographic reconstruction requires a knowledge of the change in geometry between multiple x-ray views of a common object. This is uniquely achieved using a close range photogrammetric system based on a small network of web-cameras. This paper presents the recent developments of the ObT system and describes recent findings of the photogrammetric system implementation. Based on these positive results, future work on the advancement of the ObT system as a cost-effective pseudo-3D imaging of hold baggage for airport security is proposed.


Sign in / Sign up

Export Citation Format

Share Document