scholarly journals Intelligent Machine Learning Approach for Effective Recognition of Diabetes in E-Healthcare Using Clinical Data

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2649 ◽  
Author(s):  
Amin Ul Haq ◽  
Jian Ping Li ◽  
Jalaluddin Khan ◽  
Muhammad Hammad Memon ◽  
Shah Nazir ◽  
...  

Significant attention has been paid to the accurate detection of diabetes. It is a big challenge for the research community to develop a diagnosis system to detect diabetes in a successful way in the e-healthcare environment. Machine learning techniques have an emerging role in healthcare services by delivering a system to analyze the medical data for diagnosis of diseases. The existing diagnosis systems have some drawbacks, such as high computation time, and low prediction accuracy. To handle these issues, we have proposed a diagnosis system using machine learning methods for the detection of diabetes. The proposed method has been tested on the diabetes data set which is a clinical dataset designed from patient’s clinical history. Further, model validation methods, such as hold out, K-fold, leave one subject out and performance evaluation metrics, includes accuracy, specificity, sensitivity, F1-score, receiver operating characteristic curve, and execution time have been used to check the validity of the proposed system. We have proposed a filter method based on the Decision Tree (Iterative Dichotomiser 3) algorithm for highly important feature selection. Two ensemble learning algorithms, Ada Boost and Random Forest, are also used for feature selection and we also compared the classifier performance with wrapper based feature selection algorithms. Classifier Decision Tree has been used for the classification of healthy and diabetic subjects. The experimental results show that the proposed feature selection algorithm selected features improve the classification performance of the predictive model and achieved optimal accuracy. Additionally, the proposed system performance is high compared to the previous state-of-the-art methods. High performance of the proposed method is due to the different combinations of selected features set and Plasma glucose concentrations, Diabetes pedigree function, and Blood mass index are more significantly important features in the dataset for prediction of diabetes. Furthermore, the experimental results statistical analysis demonstrated that the proposed method would effectively detect diabetes and can be deployed in an e-healthcare environment.

Author(s):  
Amin Ul Haq ◽  
Jianping Li ◽  
Jalaluddin khan ◽  
Muhammad Hammad Memon ◽  
Shah Nazir ◽  
...  

A significant attention has been made to the accurate detection of diabetes which is a big challenge for the research community to develop a diagnosis system to detect diabetes in a successful way in the IoT e-healthcare environment. Internet of Things (IOT) has emerging role in healthcare services which delivers a system to analyze the medical data for diagnosis of diseases applied data mining methods. The existing diagnosis systems have some drawbacks, such as high computation time, and low prediction accuracy. To handle these issues, we have proposed a IOT based diagnosis system using machine learning methods, such as preprocessing of data, feature selection, and classification for the detection of diabetes disease in e- healthcare environment. Model validation and performance evaluation metrics have been used to check the validity of the proposed system. We have proposed a filter method based on the Decision Tree (Iterative Dichotomiser 3) algorithm for highly important feature selection. Two ensemble learning Decision Tree algorithms, such as Ada Boost and Random Forest are also used for feature selection and compared the classifier performance with wrapper based feature selection algorithms also. Machine learning classifier Decision Tree has been used for the classification of healthy and diabetic subjects. The experimental results show that the Decision Tree algorithm based on selected features improves the classification performance of the predictive model and achieved optimal accuracy. Additionally, the proposed system performance is high as compared to the previous state-of-the-art methods. High performance of the proposed method is due to the different combinations of selected features set and GL, DPF, and BMI are more significantly important features in the dataset for prediction of diabetes disease. Furthermore, the experimental results statistical analysis demonstrated that the proposed method would be effectively detected diabetes disease and can easily be deployed in IOT wireless sensor technologies based e-healthcare environment.


2021 ◽  
Vol 102 ◽  
pp. 04004
Author(s):  
Jesse Jeremiah Tanimu ◽  
Mohamed Hamada ◽  
Mohammed Hassan ◽  
Saratu Yusuf Ilu

With the advent of new technologies in the medical field, huge amounts of cancerous data have been collected and are readily accessible to the medical research community. Over the years, researchers have employed advanced data mining and machine learning techniques to develop better models that can analyze datasets to extract the conceived patterns, ideas, and hidden knowledge. The mined information can be used as a support in decision making for diagnostic processes. These techniques, while being able to predict future outcomes of certain diseases effectively, can discover and identify patterns and relationships between them from complex datasets. In this research, a predictive model for predicting the outcome of patients’ cervical cancer results has been developed, given risk patterns from individual medical records and preliminary screening tests. This work presents a Decision tree (DT) classification algorithm and shows the advantage of feature selection approaches in the prediction of cervical cancer using recursive feature elimination technique for dimensionality reduction for improving the accuracy, sensitivity, and specificity of the model. The dataset employed here suffers from missing values and is highly imbalanced. Therefore, a combination of under and oversampling techniques called SMOTETomek was employed. A comparative analysis of the proposed model has been performed to show the effectiveness of feature selection and class imbalance based on the classifier’s accuracy, sensitivity, and specificity. The DT with the selected features and SMOTETomek has better results with an accuracy of 98%, sensitivity of 100%, and specificity of 97%. Decision Tree classifier is shown to have excellent performance in handling classification assignment when the features are reduced, and the problem of imbalance class is addressed.


2019 ◽  
Author(s):  
Cheng-Sheng Yu ◽  
Yu-Jiun Lin ◽  
Chang-Hsien Lin ◽  
Sen-Te Wang ◽  
Shiyng-Yu Lin ◽  
...  

BACKGROUND Metabolic syndrome is a cluster of disorders that significantly influence the development and deterioration of numerous diseases. FibroScan is an ultrasound device that was recently shown to predict metabolic syndrome with moderate accuracy. However, previous research regarding prediction of metabolic syndrome in subjects examined with FibroScan has been mainly based on conventional statistical models. Alternatively, machine learning, whereby a computer algorithm learns from prior experience, has better predictive performance over conventional statistical modeling. OBJECTIVE We aimed to evaluate the accuracy of different decision tree machine learning algorithms to predict the state of metabolic syndrome in self-paid health examination subjects who were examined with FibroScan. METHODS Multivariate logistic regression was conducted for every known risk factor of metabolic syndrome. Principal components analysis was used to visualize the distribution of metabolic syndrome patients. We further applied various statistical machine learning techniques to visualize and investigate the pattern and relationship between metabolic syndrome and several risk variables. RESULTS Obesity, serum glutamic-oxalocetic transaminase, serum glutamic pyruvic transaminase, controlled attenuation parameter score, and glycated hemoglobin emerged as significant risk factors in multivariate logistic regression. The area under the receiver operating characteristic curve values for classification and regression trees and for the random forest were 0.831 and 0.904, respectively. CONCLUSIONS Machine learning technology facilitates the identification of metabolic syndrome in self-paid health examination subjects with high accuracy.


Author(s):  
S. Prasanthi ◽  
S.Durga Bhavani ◽  
T. Sobha Rani ◽  
Raju S. Bapi

Vast majority of successful drugs or inhibitors achieve their activity by binding to, and modifying the activity of a protein leading to the concept of druggability. A target protein is druggable if it has the potential to bind the drug-like molecules. Hence kinase inhibitors need to be studied to understand the specificity of a kinase inhibitor in choosing a particular kinase target. In this paper we focus on human kinase drug target sequences since kinases are known to be potential drug targets. Also we do a preliminary analysis of kinase inhibitors in order to study the problem in the protein-ligand space in future. The identification of druggable kinases is treated as a classification problem in which druggable kinases are taken as positive data set and non-druggable kinases are chosen as negative data set. The classification problem is addressed using machine learning techniques like support vector machine (SVM) and decision tree (DT) and using sequence-specific features. One of the challenges of this classification problem is due to the unbalanced data with only 48 druggable kinases available against 509 non-drugggable kinases present at Uniprot. The accuracy of the decision tree classifier obtained is 57.65 which is not satisfactory. A two-tier architecture of decision trees is carefully designed such that recognition on the non-druggable dataset also gets improved. Thus the overall model is shown to achieve a final performance accuracy of 88.37. To the best of our knowledge, kinase druggability prediction using machine learning approaches has not been reported in literature.


2019 ◽  
Vol 11 (16) ◽  
pp. 1943 ◽  
Author(s):  
Omid Rahmati ◽  
Saleh Yousefi ◽  
Zahra Kalantari ◽  
Evelyn Uuemaa ◽  
Teimur Teimurian ◽  
...  

Mountainous areas are highly prone to a variety of nature-triggered disasters, which often cause disabling harm, death, destruction, and damage. In this work, an attempt was made to develop an accurate multi-hazard exposure map for a mountainous area (Asara watershed, Iran), based on state-of-the art machine learning techniques. Hazard modeling for avalanches, rockfalls, and floods was performed using three state-of-the-art models—support vector machine (SVM), boosted regression tree (BRT), and generalized additive model (GAM). Topo-hydrological and geo-environmental factors were used as predictors in the models. A flood dataset (n = 133 flood events) was applied, which had been prepared using Sentinel-1-based processing and ground-based information. In addition, snow avalanche (n = 58) and rockfall (n = 101) data sets were used. The data set of each hazard type was randomly divided to two groups: Training (70%) and validation (30%). Model performance was evaluated by the true skill score (TSS) and the area under receiver operating characteristic curve (AUC) criteria. Using an exposure map, the multi-hazard map was converted into a multi-hazard exposure map. According to both validation methods, the SVM model showed the highest accuracy for avalanches (AUC = 92.4%, TSS = 0.72) and rockfalls (AUC = 93.7%, TSS = 0.81), while BRT demonstrated the best performance for flood hazards (AUC = 94.2%, TSS = 0.80). Overall, multi-hazard exposure modeling revealed that valleys and areas close to the Chalous Road, one of the most important roads in Iran, were associated with high and very high levels of risk. The proposed multi-hazard exposure framework can be helpful in supporting decision making on mountain social-ecological systems facing multiple hazards.


10.2196/17110 ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. e17110 ◽  
Author(s):  
Cheng-Sheng Yu ◽  
Yu-Jiun Lin ◽  
Chang-Hsien Lin ◽  
Sen-Te Wang ◽  
Shiyng-Yu Lin ◽  
...  

Background Metabolic syndrome is a cluster of disorders that significantly influence the development and deterioration of numerous diseases. FibroScan is an ultrasound device that was recently shown to predict metabolic syndrome with moderate accuracy. However, previous research regarding prediction of metabolic syndrome in subjects examined with FibroScan has been mainly based on conventional statistical models. Alternatively, machine learning, whereby a computer algorithm learns from prior experience, has better predictive performance over conventional statistical modeling. Objective We aimed to evaluate the accuracy of different decision tree machine learning algorithms to predict the state of metabolic syndrome in self-paid health examination subjects who were examined with FibroScan. Methods Multivariate logistic regression was conducted for every known risk factor of metabolic syndrome. Principal components analysis was used to visualize the distribution of metabolic syndrome patients. We further applied various statistical machine learning techniques to visualize and investigate the pattern and relationship between metabolic syndrome and several risk variables. Results Obesity, serum glutamic-oxalocetic transaminase, serum glutamic pyruvic transaminase, controlled attenuation parameter score, and glycated hemoglobin emerged as significant risk factors in multivariate logistic regression. The area under the receiver operating characteristic curve values for classification and regression trees and for the random forest were 0.831 and 0.904, respectively. Conclusions Machine learning technology facilitates the identification of metabolic syndrome in self-paid health examination subjects with high accuracy.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 499 ◽  
Author(s):  
Iqbal H. Sarker ◽  
Yoosef B. Abushark ◽  
Asif Irshad Khan

This paper mainly formulates the problem of predicting context-aware smartphone apps usage based on machine learning techniques. In the real world, people use various kinds of smartphone apps differently in different contexts that include both the user-centric context and device-centric context. In the area of artificial intelligence and machine learning, decision tree model is one of the most popular approaches for predicting context-aware smartphone usage. However, real-life smartphone apps usage data may contain higher dimensions of contexts, which may cause several issues such as increases model complexity, may arise over-fitting problem, and consequently decreases the prediction accuracy of the context-aware model. In order to address these issues, in this paper, we present an effective principal component analysis (PCA) based context-aware smartphone apps prediction model, “ContextPCA” using decision tree machine learning classification technique. PCA is an unsupervised machine learning technique that can be used to separate symmetric and asymmetric components, and has been adopted in our “ContextPCA” model, in order to reduce the context dimensions of the original data set. The experimental results on smartphone apps usage datasets show that “ContextPCA” model effectively predicts context-aware smartphone apps in terms of precision, recall, f-score and ROC values in various test cases.


2013 ◽  
pp. 937-947
Author(s):  
S. Prasanthi ◽  
S.Durga Bhavani ◽  
T. Sobha Rani ◽  
Raju S. Bapi

Vast majority of successful drugs or inhibitors achieve their activity by binding to, and modifying the activity of a protein leading to the concept of druggability. A target protein is druggable if it has the potential to bind the drug-like molecules. Hence kinase inhibitors need to be studied to understand the specificity of a kinase inhibitor in choosing a particular kinase target. In this paper we focus on human kinase drug target sequences since kinases are known to be potential drug targets. Also we do a preliminary analysis of kinase inhibitors in order to study the problem in the protein-ligand space in future. The identification of druggable kinases is treated as a classification problem in which druggable kinases are taken as positive data set and non-druggable kinases are chosen as negative data set. The classification problem is addressed using machine learning techniques like support vector machine (SVM) and decision tree (DT) and using sequence-specific features. One of the challenges of this classification problem is due to the unbalanced data with only 48 druggable kinases available against 509 non-drugggable kinases present at Uniprot. The accuracy of the decision tree classifier obtained is 57.65 which is not satisfactory. A two-tier architecture of decision trees is carefully designed such that recognition on the non-druggable dataset also gets improved. Thus the overall model is shown to achieve a final performance accuracy of 88.37. To the best of our knowledge, kinase druggability prediction using machine learning approaches has not been reported in literature.


Thyroid is an unending and complex infection caused by unedifying levels of TSH (Thyroid Simulation Hormone) or by thyroid organ problems themselves. Hashimoto's thyroid is the most widely recognized cause of hypothyroidism. The body makes anticorps that pulverize the thyroid organ in an auto-safe condition. It offers machine learning algorithms in the system proposed to predict thyroid disease in disease-intensive societies effectively. This is a serious concern for public health even though it is massively increasing in many countries. This shows that the problem must be predicted as urgently as possible to overcome the shortcomings of previously existing clinical decision-making tools with low precision. This paper examines numerous machine learning strategies for osteoporosis prediction. The paper examines and assesses the use of the strategy of feature selection combined with classification techniques. WEKA's classification techniques are used to measure an osteoporosis data set. The results are calculated by means of various test options, including 10-fold cross-validation, training sets and the percentage divided with and without the selection method. The results are compared with correctly classified instances, runtime, kappa and absolute mean values for experiments with and without feature selection techniques.


Author(s):  
Ritu Khandelwal ◽  
Hemlata Goyal ◽  
Rajveer Singh Shekhawat

Introduction: Machine learning is an intelligent technology that works as a bridge between businesses and data science. With the involvement of data science, the business goal focuses on findings to get valuable insights on available data. The large part of Indian Cinema is Bollywood which is a multi-million dollar industry. This paper attempts to predict whether the upcoming Bollywood Movie would be Blockbuster, Superhit, Hit, Average or Flop. For this Machine Learning techniques (classification and prediction) will be applied. To make classifier or prediction model first step is the learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations. Methods: All the techniques related to classification and Prediction such as Support Vector Machine(SVM), Random Forest, Decision Tree, Naïve Bayes, Logistic Regression, Adaboost, and KNN will be applied and try to find out efficient and effective results. All these functionalities can be applied with GUI Based workflows available with various categories such as data, Visualize, Model, and Evaluate. Result: To make classifier or prediction model first step is learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations Conclusion: This paper focuses on Comparative Analysis that would be performed based on different parameters such as Accuracy, Confusion Matrix to identify the best possible model for predicting the movie Success. By using Advertisement Propaganda, they can plan for the best time to release the movie according to the predicted success rate to gain higher benefits. Discussion: Data Mining is the process of discovering different patterns from large data sets and from that various relationships are also discovered to solve various problems that come in business and helps to predict the forthcoming trends. This Prediction can help Production Houses for Advertisement Propaganda and also they can plan their costs and by assuring these factors they can make the movie more profitable.


Sign in / Sign up

Export Citation Format

Share Document