scholarly journals Integrating 3D Model Representation for an Accurate Non-Invasive Assessment of Pressure Injuries with Deep Learning

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2933
Author(s):  
Sofia Zahia ◽  
Begonya Garcia-Zapirain ◽  
Adel Elmaghraby

Pressure injuries represent a major concern in many nations. These wounds result from prolonged pressure on the skin, which mainly occur among elderly and disabled patients. If retrieving quantitative information using invasive methods is the most used method, it causes significant pain and discomfort to the patients and may also increase the risk of infections. Hence, developing non-intrusive methods for the assessment of pressure injuries would represent a highly useful tool for caregivers and a relief for patients. Traditional methods rely on findings retrieved solely from 2D images. Thus, bypassing the 3D information deriving from the deep and irregular shape of this type of wounds leads to biased measurements. In this paper, we propose an end-to-end system which uses a single 2D image and a 3D mesh of the pressure injury, acquired using the Structure Sensor, and outputs all the necessary findings such as: external segmentation of the wound as well as its real-world measurements (depth, area, volume, major axis and minor axis). More specifically, a first block composed of a Mask RCNN model uses the 2D image to output the segmentation of the external boundaries of the wound. Then, a second block matches the 2D and 3D views to segment the wound in the 3D mesh using the segmentation output and generates the aforementioned real-world measurements. Experimental results showed that the proposed framework can not only output refined segmentation with 87% precision, but also retrieves reliable measurements, which can be used for medical assessment and healing evaluation of pressure injuries.

Toxins ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 19
Author(s):  
Mark Little ◽  
Peter Pereira ◽  
Jamie Seymour

Carukia barnesi was the first in an expanding list of cubozoan jellyfish whose sting was identified as causing Irukandji syndrome. Nematocysts present on both the bell and tentacles are known to produce localised stings, though their individual roles in Irukandji syndrome have remained speculative. This research examines differences through venom profiling and pulse wave Doppler in a murine model. The latter demonstrates marked measurable differences in cardiac parameters. The venom from tentacles (CBVt) resulted in cardiac decompensation and death in all mice at a mean of 40 min (95% CL: ± 11 min), whereas the venom from the bell (CBVb) did not produce any cardiac dysfunction nor death in mice at 60 min post-exposure. This difference is pronounced, and we propose that bell exposure is unlikely to be causative in severe Irukandji syndrome. To date, all previously published cubozoan venom research utilised parenterally administered venom in their animal models, with many acknowledging their questionable applicability to real-world envenomation. Our model used live cubozoans on anaesthetised mice to simulate normal envenomation mechanics and actual expressed venoms. Consequently, we provide validity to the parenteral methodology used by previous cubozoan venom research.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 879
Author(s):  
Kevin Cheng ◽  
Andrew Lin ◽  
Jeremy Yuvaraj ◽  
Stephen J. Nicholls ◽  
Dennis T.L. Wong

Radiomics, via the extraction of quantitative information from conventional radiologic images, can identify imperceptible imaging biomarkers that can advance the characterization of coronary plaques and the surrounding adipose tissue. Such an approach can unravel the underlying pathophysiology of atherosclerosis which has the potential to aid diagnostic, prognostic and, therapeutic decision making. Several studies have demonstrated that radiomic analysis can characterize coronary atherosclerotic plaques with a level of accuracy comparable, if not superior, to current conventional qualitative and quantitative image analysis. While there are many milestones still to be reached before radiomics can be integrated into current clinical practice, such techniques hold great promise for improving the imaging phenotyping of coronary artery disease.


Reproduction ◽  
2017 ◽  
Vol 153 (3) ◽  
pp. R85-R96 ◽  
Author(s):  
E Mourier ◽  
A Tarrade ◽  
J Duan ◽  
C Richard ◽  
C Bertholdt ◽  
...  

In human obstetrics, placental vascularisation impairment is frequent as well as linked to severe pathological events (preeclampsia and intrauterine growth restriction), and there is a need for reliable methods allowing non-invasive evaluation of placental blood flow. Uteroplacental vascularisation is complex, and animal models are essential for the technical development and safety assessment of these imaging tools for human clinical use; however, these techniques can also be applied in the veterinary context. This paper reviews how ultrasound-based imaging methods such as 2D and 3D Doppler can provide valuable insight for the exploration of placental blood flow both in humans and animals and how new approaches such as the use of ultrasound contrast agents or ultrafast Doppler may allow to discriminate between maternal (non-pulsatile) and foetal (pulsatile) blood flow in the placenta. Finally, functional magnetic resonance imaging could also be used to evaluate placental blood flow, as indicated by studies in animal models, but its safety in human pregnancy still requires to be confirmed.


2006 ◽  
Vol 61 (3) ◽  
pp. 201-208 ◽  
Author(s):  
R. Bell ◽  
J.-E. Kruse ◽  
A. Garcia ◽  
T. Glade ◽  
A. Hördt

Abstract. Landslides occur frequently all over the world, causing at times considerable economic damage, injuries and even death. In order to improve hazard assessment, common landslide types of a given region need to be investigated in detail. While traditional techniques of subsurface investigation are expensive and only provide point information, geophysical methods are suitable tools for gathering 2D and 3D information on the subsurface quickly, reliably and cost-effectively. In this study, the suitability and limitations of 2D resistivity for the determination of landslide extent, structure and soil moisture conditions are presented. For this purpose, two identical profiles were taken during a two-month period. Significant differences in electrical resistivity (>1000 Ωm) due to varying soil moisture conditions were observed. Using various inversion parameters, it was possible to model two distinct subsurface images. Regrettably, the sliding plane could not be detected reliably, possibly due to the homogeniety of the landslide material and underlying bedrock.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Zhu ◽  
Wang Yao ◽  
Bing-Chen Xu ◽  
Yi-Yan Lei ◽  
Qi-Kun Guo ◽  
...  

Abstract Objectives To develop and validate a radiomics model for evaluating treatment response to immune-checkpoint inhibitor plus chemotherapy (ICI + CT) in patients with advanced esophageal squamous cell carcinoma (ESCC). Methods A total of 64 patients with advance ESCC receiving first-line ICI + CT at two centers between January 2019 and June 2020 were enrolled in this study. Both 2D ROIs and 3D ROIs were segmented. ComBat correction was applied to minimize the potential bias on the results due to different scan protocols. A total of 788 features were extracted and radiomics models were built on corrected/uncorrected 2D and 3D features by using 5-fold cross-validation. The performance of the radiomics models was assessed by its discrimination, calibration and clinical usefulness with independent validation. Results Five features and support vector machine algorithm were selected to build the 2D uncorrected, 2D corrected, 3D uncorrected and 3D corrected radiomics models. The 2D radiomics models significantly outperformed the 3D radiomics models in both primary and validation cohorts. When ComBat correction was used, the performance of 2D models was better (p = 0.0059) in the training cohort, and significantly better (p < 0.0001) in the validation cohort. The 2D corrected radiomics model yielded the optimal performance and was used to build the nomogram. The calibration curve of the radiomics model demonstrated good agreement between prediction and observation and the decision curve analysis confirmed the clinical utility. Conclusions The easy-to-use 2D corrected radiomics model could facilitate noninvasive preselection of ESCC patients who would benefit from ICI + CT.


2019 ◽  
Author(s):  
Valere Huypens

<div>Current constant speed IPO's, usually, use Sampled-data IPO's and constant speed lines use the </div><div>wrong initialized software DDA-ipo's, which make these IPO's unusable. The Bresenham- and </div><div>midpoint IPO's are non-constant speed reference pulse IPO's with bounded inaccuracy.</div><div>By adding an ultra-fast 3-lines algorithm "PRM-cs" to the actual midpoint or Bresenham algorithms, </div><div>we convert these midpoint-ipo's to very fast, constant speed, reference pulse IPO's. </div><div>This applies to 2D-lines, 3D-lines, 2D-curves and 2D-NURBS.</div><div>The PRM-cs measures, in real-time, the length of the discrete curve and the PRM-cs is completely new. </div><div>We define the best IPO, the major axis principle and the LSD-priority. </div><div>The major axis principle holds for the actual 3D-line IPO's. These IPO's are, generally, inaccurate, </div><div>but they can be updated to constant speed 3D-line IPO's, when the production manager agrees.</div><div>The Digital Geometric Geometry (DAG) defines the discrete lines globally, but this global </div><div>definition of a discrete 3D-line, gives discrete 3D-lines whose accuracy is much less than the </div><div>accuracy of the best discrete 3D-lines (e.g. 37% worse).</div><div>We describe the three causes of the inaccurate (imperfect) discrete 3D-lines. </div><div>All existing pulse-rate or PRM-ipo's use a wrong initialization, which deteriorates the accuracy. </div><div>We determine the right initialization for the new PRM-cs and the updated PRM-ipo. </div><div>We propose the benchmark-ipo "listSIM-ipo". This constant speed IPO can, also, be used in real-</div><div>time for every 2D- and 3D-curve. </div><div>The 3rd-degree Trident NURB shows that the constant speed reference pulse method is much </div><div>better than the existing sampled-data methods.</div>


Author(s):  
N. N. Nasorudin ◽  
M. I. Hassan ◽  
N. A. Zulkifli ◽  
A. Abdul Rahman

Recently in our country, the construction of buildings become more complex and it seems that strata objects database becomes more important in registering the real world as people now own and use multilevel of spaces. Furthermore, strata title was increasingly important and need to be well-managed. LADM is a standard model for land administration and it allows integrated 2D and 3D representation of spatial units. LADM also known as ISO 19152. The aim of this paper is to develop a strata objects database using LADM. This paper discusses the current 2D geospatial database and needs for 3D geospatial database in future. This paper also attempts to develop a strata objects database using a standard data model (LADM) and to analyze the developed strata objects database using LADM data model. The current cadastre system in Malaysia includes the strata title is discussed in this paper. The problems in the 2D geospatial database were listed and the needs for 3D geospatial database in future also is discussed. The processes to design a strata objects database are conceptual, logical and physical database design. The strata objects database will allow us to find the information on both non-spatial and spatial strata title information thus shows the location of the strata unit. This development of strata objects database may help to handle the strata title and information.


Sign in / Sign up

Export Citation Format

Share Document