scholarly journals Flexible Ecoflex®/Graphene Nanoplatelet Foams for Highly Sensitive Low-Pressure Sensors

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4406
Author(s):  
Marco Fortunato ◽  
Irene Bellagamba ◽  
Alessio Tamburrano ◽  
Maria Sabrina Sarto

The high demand for multifunctional devices for smart clothing applications, human motion detection, soft robotics, and artificial electronic skins has encouraged researchers to develop new high-performance flexible sensors. In this work, we fabricated and tested new 3D squeezable Ecoflex® open cell foams loaded with different concentrations of graphene nanoplatelets (GNPs) in order to obtain lightweight, soft, and cost-effective piezoresistive sensors with high sensitivity in a low-pressure regime. We analyzed the morphology of the produced materials and characterized both the mechanical and piezoresistive response of samples through quasi-static cyclic compression tests. Results indicated that sensors infiltrated with 1 mg of ethanol/GNP solution with a GNP concentration of 3 mg/mL were more sensitive and stable compared to those infiltrated with the same amount of ethanol/GNP solution but with a lower GNP concentration. The electromechanical response of the sensors showed a negative piezoresistive behavior up to ~10 kPa and an opposite trend for the 10–40 kPa range. The sensors were particularly sensitive at very low deformations, thus obtaining a maximum sensitivity of 0.28 kPa−1 for pressures lower than 10 kPa.

Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 496 ◽  
Author(s):  
Xi Zhou ◽  
Yongna Zhang ◽  
Jun Yang ◽  
Jialu Li ◽  
Shi Luo ◽  
...  

Wearable pressure sensors have attracted widespread attention in recent years because of their great potential in human healthcare applications such as physiological signals monitoring. A desirable pressure sensor should possess the advantages of high sensitivity, a simple manufacturing process, and good stability. Here, we present a highly sensitive, simply fabricated wearable resistive pressure sensor based on three-dimensional microstructured carbon nanowalls (CNWs) embedded in a polydimethylsiloxane (PDMS) substrate. The method of using unpolished silicon wafers as templates provides an easy approach to fabricate the irregular microstructure of CNWs/PDMS electrodes, which plays a significant role in increasing the sensitivity and stability of resistive pressure sensors. The sensitivity of the CNWs/PDMS pressure sensor with irregular microstructures is as high as 6.64 kPa−1 in the low-pressure regime, and remains fairly high (0.15 kPa−1) in the high-pressure regime (~10 kPa). Both the relatively short response time of ~30 ms and good reproducibility over 1000 cycles of pressure loading and unloading tests illustrate the high performance of the proposed device. Our pressure sensor exhibits a superior minimal limit of detection of 0.6 Pa, which shows promising potential in detecting human physiological signals such as heart rate. Moreover, it can be turned into an 8 × 8 pixels array to map spatial pressure distribution and realize array sensing imaging.


Nanoscale ◽  
2018 ◽  
Vol 10 (21) ◽  
pp. 10033-10040 ◽  
Author(s):  
Gang Ge ◽  
Yichen Cai ◽  
Qiuchun Dong ◽  
Yizhou Zhang ◽  
Jinjun Shao ◽  
...  

High-performance stretchable and wearable electronic skins (E-skins) with high sensitivity and a large sensing range are urgently required with the rapid development of the Internet of things and artificial intelligence.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 664 ◽  
Author(s):  
Junsong Hu ◽  
Junsheng Yu ◽  
Ying Li ◽  
Xiaoqing Liao ◽  
Xingwu Yan ◽  
...  

The reasonable design pattern of flexible pressure sensors with excellent performance and prominent features including high sensitivity and a relatively wide workable linear range has attracted significant attention owing to their potential application in the advanced wearable electronics and artificial intelligence fields. Herein, nano carbon black from kerosene soot, an atmospheric pollutant generated during the insufficient burning of hydrocarbon fuels, was utilized as the conductive material with a bottom interdigitated textile electrode screen printed using silver paste to construct a piezoresistive pressure sensor with prominent performance. Owing to the distinct loose porous structure, the lumpy surface roughness of the fabric electrodes, and the softness of polydimethylsiloxane, the piezoresistive pressure sensor exhibited superior detection performance, including high sensitivity (31.63 kPa−1 within the range of 0–2 kPa), a relatively large feasible range (0–15 kPa), a low detection limit (2.26 pa), and a rapid response time (15 ms). Thus, these sensors act as outstanding candidates for detecting the human physiological signal and large-scale limb movement, showing their broad range of application prospects in the advanced wearable electronics field.


Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1103
Author(s):  
Jae Sang Heo ◽  
Keon Woo Lee ◽  
Jun Ho Lee ◽  
Seung Beom Shin ◽  
Jeong Wan Jo ◽  
...  

Among various wearable health-monitoring electronics, electronic textiles (e-textiles) have been considered as an appropriate alternative for a convenient self-diagnosis approach. However, for the realization of the wearable e-textiles capable of detecting subtle human physiological signals, the low-sensing performances still remain as a challenge. In this study, a fiber transistor-type ultra-sensitive pressure sensor (FTPS) with a new architecture that is thread-like suspended dry-spun carbon nanotube (CNT) fiber source (S)/drain (D) electrodes is proposed as the first proof of concept for the detection of very low-pressure stimuli. As a result, the pressure sensor shows an ultra-high sensitivity of ~3050 Pa−1 and a response/recovery time of 258/114 ms in the very low-pressure range of <300 Pa as the fiber transistor was operated in the linear region (VDS = −0.1 V). Also, it was observed that the pressure-sensing characteristics are highly dependent on the contact pressure between the top CNT fiber S/D electrodes and the single-walled carbon nanotubes (SWCNTs) channel layer due to the air-gap made by the suspended S/D electrode fibers on the channel layers of fiber transistors. Furthermore, due to their remarkable sensitivity in the low-pressure range, an acoustic wave that has a very tiny pressure could be detected using the FTPS.


Micromachines ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 472 ◽  
Author(s):  
Xu Zheng ◽  
Qing Wang ◽  
Jinjin Luan ◽  
Yao Li ◽  
Ning Wang

Wearable health monitoring smart systems based on flexible metal films are considered to be the next generation of devices for remote medical practice. However, cracks on the metallic surface of the films and difficulty in repeatability are the key issues that restrict the application of such wearable strain sensors. In this work, a flexible wearable strain sensor with high sensitivity and good repeatability was fabricated based on a patterned metal/polymer composite material fabricated through nanoimprint lithography. The mechanical properties were measured through cyclic tension and bending loading. The sensor exhibited a small ΔR/R0 error line for multiple test pieces, indicating the good mechanical stability and repeatability of the fabricated device. Moreover, the sensor possesses high sensitivity with gauge factors of 10 for strain less than 50% and 40 for strain from 50% to 70%. Various activities were successfully detected in real-time, such as swallowing, closing/opening of the mouth, and multi-angle bending of elbow, which illustrates the proposed sensor’s potential as a wearable device for the human body.


2012 ◽  
Vol 19 (1) ◽  
pp. 133-140 ◽  
Author(s):  
Marina Zarnik ◽  
Darko Belavic

The Effect of Humidity on the Stability of LTCC Pressure SensorsLTCC-based pressure sensors are promising candidates for wet-wet applications in which the effect of the surrounding media on the sensor's characteristics is of key importance. The effect of humidity on the sensor's stability can be a problem, particularly in the case of capacitive sensors. A differential mode of operation can be a good solution, but manufacturing the appropriate sensing capacitors remains a major challenge. In the case of piezoresistive sensors the influence of humidity is less critical, but it still should be considered as an important parameter when designing sensors for low-pressure ranges. In this paper we discuss the stability of the sensors' offset characteristics, which was inspected closely using experimental and numerical analyses.


2021 ◽  
Author(s):  
Meiling Jia ◽  
Chenghan Yi ◽  
Yankun Han ◽  
Xin Li ◽  
Guoliang Xu ◽  
...  

Abstract Thin, lightweight, and flexible textile pressure sensors with the ability to precisely detect the full range of faint pressure (< 100 Pa), low pressure (in the range of KPa) and high pressure (in the range of MPa) are in significant demand to meet the requirements for applications in daily activities and more meaningfully in some harsh environments, such as high temperature and high pressure. However, it is still a major challenge to fulfill these requirements simultaneously in a single pressure sensor. Herein, a high-performance pressure sensor enabled by polyimide fiber fabric with functionalized carbon-nanotube (PI/FCNT) is obtained via a facile electrophoretic deposition (EPD) approach. High-density FCNT is evenly wrapped and chemically bonded to the fiber surface during the EPD process, forming a conductive hierarchical fiber/FCNT matrix. Benefiting from the abundant yet firm contacting points, point-to-point contacting mode, and high elastic modulus of both PI and CNT, the proposed PI/FCNT pressure sensor exhibits ultra-high sensitivity (3.57 MPa− 1), ultra-wide linearity (3.24 MPa), exceptionally broad sensing range (~ 45 MPa), and long-term stability (> 4000 cycles). Furthermore, under a high working temperature of 200 ºC, the proposed sensor device still shows an ultra-high sensitivity of 2.64 MPa− 1 within a wide linear range of 7.2 MPa, attributing to its intrinsic high-temperature-resistant properties of PI and CNT. Thanks to these merits, the proposed PI/FCNT(EPD) pressure sensor could serve as an E-skin device to monitor the human physiological information, precisely detect tiny and extremely high pressure, and can be integrated into an intelligent mechanical hand to detect the contact force under high-temperature (> 300 ºC), endowing it with high applicability in the fields of real-time health monitoring, intelligent robots, and harsh environments.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3465
Author(s):  
Jianli Cui ◽  
Xueli Nan ◽  
Guirong Shao ◽  
Huixia Sun

Researchers are showing an increasing interest in high-performance flexible pressure sensors owing to their potential uses in wearable electronics, bionic skin, and human–machine interactions, etc. However, the vast majority of these flexible pressure sensors require extensive nano-architectural design, which both complicates their manufacturing and is time-consuming. Thus, a low-cost technology which can be applied on a large scale is highly desirable for the manufacture of flexible pressure-sensitive materials that have a high sensitivity over a wide range of pressures. This work is based on the use of a three-dimensional elastic porous carbon nanotubes (CNTs) sponge as the conductive layer to fabricate a novel flexible piezoresistive sensor. The synthesis of a CNTs sponge was achieved by chemical vapor deposition, the basic underlying principle governing the sensing behavior of the CNTs sponge-based pressure sensor and was illustrated by employing in situ scanning electron microscopy. The CNTs sponge-based sensor has a quick response time of ~105 ms, a high sensitivity extending across a broad pressure range (less than 10 kPa for 809 kPa−1) and possesses an outstanding permanence over 4,000 cycles. Furthermore, a 16-pixel wireless sensor system was designed and a series of applications have been demonstrated. Its potential applications in the visualizing pressure distribution and an example of human–machine communication were also demonstrated.


2019 ◽  
Vol 54 (3) ◽  
pp. 423-434 ◽  
Author(s):  
MB Azizkhani ◽  
Sh Rastgordani ◽  
A. Pourkamali Anaraki ◽  
J Kadkhodapour ◽  
B Shirkavand Hadavand

Tuning the electromechanical performance in piezoresistive composite strain sensors is primarily attained through appropriately employing the materials system and the fabrication process. High sensitivity along with flexibility in the strain sensing devices needs to be met according to the application (e.g. human motion detection, health and sports monitoring). In this paper, a highly stretchable and sensitive strain sensor with a low-cost fabrication is proposed which is acquired by embedding the chopped carbon fibers sandwiched in between silicone rubber layers. The electrical and mechanical features of the sensor were characterized through stretch/release loading tests where a considerably high sensitivity (the gauge factor about 100) was observed with very low hysteresis. This implies high strain reversibility (i.e. full recovery in each cycle) over 700 loading cycles. Moreover, the sensors exhibited ultra-high stretchability (up to ∼300% elongation) in addition to a low stiffness meaning minimal mechanical effects induced by the sensor for sensitive human motion monitoring applications including large and small deformations. The results suggest the promising capability of the present sensor in reflecting the human body motion detection.


Sign in / Sign up

Export Citation Format

Share Document