scholarly journals Systems Architecture Design Pattern Catalog for Developing Digital Twins

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5103
Author(s):  
Bedir Tekinerdogan ◽  
Cor Verdouw

A digital twin is a digital replica of a physical entity to which it is remotely connected. A digital twin can provide a rich representation of the corresponding physical entity and enables sophisticated control for various purposes. Although the concept of the digital twin is largely known, designing digital twins based systems has not yet been fully explored. In practice, digital twins can be applied in different ways leading to different architectural designs. To guide the architecture design process, we provide a pattern-oriented approach for architecting digital twin-based systems. To this end, we propose a catalog of digital twin architecture design patterns that can be reused in the broad context of systems engineering. The patterns support the various phases in the systems engineering life cycle process, and are described using a well-defined pattern documentation template. For illustrating the application of digital twin patterns, we adopt a multi-case study approach in the agriculture and food domain.

2021 ◽  
Vol 1 ◽  
pp. 2991-3000
Author(s):  
Frank Koppenhagen ◽  
Tim Blümel ◽  
Tobias Held ◽  
Christoph Wecht ◽  
Paul Davin Kollmer

AbstractCombining agility and convergence in the development of physical products is a major challenge. Rooted in a design thinking approach, Stanford's ME310 process model attempts to resolve the conflicting priorities of these two design principles. To investigate how successful Stanford's hybrid process model is in doing so, we have used a qualitative case study approach. Our paper begins by outlining this process model's fundamental principles in terms of engineering design methodology. Subsequently, we present the results of our empirical analysis, which tracks the coevolution of problem and solution space by meticulously examining all prototype paths in ten of Stanford's ME310 student projects. We have discovered that convergence during solution finding does not correspond to the process model's theoretical specifications. Even in the phase of the final prototype, both the technical concept and the underlying problem formulation changed frequently. Further research should focus on combining the prototype-based ME310 approach with methods from systems engineering which allow for a more comprehensive theoretical exploration of the solution space. This could lead to improved convergence during solution development.


2020 ◽  
Vol 12 (6) ◽  
pp. 2307 ◽  
Author(s):  
Fabian Dembski ◽  
Uwe Wössner ◽  
Mike Letzgus ◽  
Michael Ruddat ◽  
Claudia Yamu

Cities are complex systems connected to economic, ecological, and demographic conditions and change. They are also characterized by diverging perceptions and interests of citizens and stakeholders. Thus, in the arena of urban planning, we are in need of approaches that are able to cope not only with urban complexity but also allow for participatory and collaborative processes to empower citizens. This to create democratic cities. Connected to the field of smart cities and citizens, we present in this paper, the prototype of an urban digital twin for the 30,000-people town of Herrenberg in Germany. Urban digital twins are sophisticated data models allowing for collaborative processes. The herein presented prototype comprises (1) a 3D model of the built environment, (2) a street network model using the theory and method of space syntax, (3) an urban mobility simulation, (4) a wind flow simulation, and (5) a number of empirical quantitative and qualitative data using volunteered geographic information (VGI). In addition, the urban digital twin was implemented in a visualization platform for virtual reality and was presented to the general public during diverse public participatory processes, as well as in the framework of the “Morgenstadt Werkstatt” (Tomorrow’s Cities Workshop). The results of a survey indicated that this method and technology could significantly aid in participatory and collaborative processes. Further understanding of how urban digital twins support urban planners, urban designers, and the general public as a collaboration and communication tool and for decision support allows us to be more intentional when creating smart cities and sustainable cities with the help of digital twins. We conclude the paper with a discussion of the presented results and further research directions.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8194
Author(s):  
Mehdi Kherbache ◽  
Moufida Maimour ◽  
Eric Rondeau

The Industrial Internet of Things (IIoT) is known to be a complex system because of its severe constraints as it controls critical applications. It is difficult to manage such networks and keep control of all the variables impacting their operation during their whole lifecycle. Meanwhile, Digital Twinning technology has been increasingly used to optimize the performances of industrial systems and has been ranked as one of the top ten most promising technological trends in the next decade. Many Digital Twins of industrial systems exist nowadays but only few are destined to networks. In this paper, we propose a holistic digital twinning architecture for the IIoT where the network is integrated along with the other industrial components of the system. To do so, the concept of Network Digital Twin is introduced. The main motivation is to permit a closed-loop network management across the whole network lifecycle, from the design to the service phase. Our architecture leverages the Software Defined Networking (SDN) paradigm as an expression of network softwarization. Mainly, the SDN controller allows for setting up the connection between each Digital Twin of the industrial system and its physical counterpart. We validate the feasibility of the proposed architecture in the process of choosing the most suitable communication mechanism that satisfies the real-time requirements of a Flexible Production System.


2021 ◽  
Author(s):  
Mairi Kerin ◽  
Duc Truong Pham ◽  
Jun Huang ◽  
Jeremy Hadall

Abstract A digital twin is a “live” virtual replica of a sensorised component, product, process, human, or system. It accurately copies the entity being modelled by capturing information in real time or near real time from the entity through embedded sensors and the Internet-of-Things. Many applications of digital twins in manufacturing industry have been investigated. This article focuses on the development of product digital twins to reduce the impact of quantity, quality, and demand uncertainties in remanufacturing. Starting from issues specific to remanufacturing, the article derives the functional requirements for a product digital twin for remanufacturing and proposes a UML model of a generic asset to be remanufactured. The model has been demonstrated in a case study which highlights the need to translate existing knowledge and data into an integrated system to realise a product digital twin, capable of supporting remanufacturing process planning.


Author(s):  
Sigrid S. Johansen ◽  
Amir R. Nejad

Abstract A digital twin is a virtual representation of a system containing all information available on site. This paper presents condition monitoring of drivetrains in marine power transmission systems through digital twin approach. A literature review regarding current operations concerning maintenance approaches in todays practices are covered. State-of-the-art fault detection in drivetrains is discussed, founded in condition monitoring, data-based schemes and model-based approaches, and the digital twin approach is introduced. It is debated that a model-based approach utilizing a digital twin could be recommended for fault detection of drivetrains. By employing a digital twin, fault detection would be extended to relatively highly diagnostic and predictive maintenance programme, and operation and maintenance costs could be reduced. A holistic model system approach is considered, and methodologies of digital twin design are covered. A physical-based model rather than a data based model is considered, however there are no clear answer whereas which type is beneficial. That case is mostly answered by the amount of data available. Designing the model introduces several pitfalls depending on the relevant system, and the advantages, disadvantages and appropriate applications are discussed. For a drivetrain it is found that multi-body simulation is advised for the creation of a digital twin model. A digital twin of a simple drivetrain test rig is made, and different modelling approaches were implemented to investigate levels of accuracy. Reference values were derived empirically by attaching sensors to the drivetrain during operation in the test rig. Modelling with a low fidelity model showed high accuracy, however it would lack several modules required for it to be called a digital twin. The higher fidelity model showed that finding the stiffness parameter proves challenging, due to high stiffness sensitivity as the experimental modelling demonstrates. Two industries that could have significant benefits from implementing digital twins are discussed; the offshore wind industry and shipping. Both have valuable assets, with reliability sensitive systems and high costs of downtime and maintenance. Regarding the shipping industry an industrial case study is done. Area of extra focus is operations of Ro-Ro (roll on-roll off) vessels. The vessels in the case study are managed by Wilhelmsen Ship Management and a discussion of the implementation of digital twins in this sector is comprised in this article.


2021 ◽  
Vol 1 ◽  
pp. 2561-2570
Author(s):  
Sergej Japs ◽  
Harald Anacker

AbstractCyber-physical systems (CPS), like autonomous vehicles, are intelligent and networked. The development of such systems and its components requires interdisciplinary cooperation between different stakeholders. A lack of system understanding between stakeholders can lead to unidentified and unresolved security threats & safety hazards in early engineering phases, resulting in high costs in product development and potentially compromises compliance with the safety of CPS.Model-based systems engineering (MBSE) improves the system understanding between stakeholders by using models.However, MBSE approaches only partially address security threats & safety hazards. In particular, their integrative consideration is not taken into account.Established security & safety approaches are either only applicable to specific disciplines or only partially consider security threats & safety hazards.In the context of this paper we present a method for the resolution of safety relevant security threats in the system architecture design phase using design patterns.We illustrate our approach with the example of the automotive sector.Finally, we present an evaluation of the method, based on an 8 week project with 67 master students.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 476
Author(s):  
Ágnes Bárkányi ◽  
Tibor Chován ◽  
Sándor Németh ◽  
János Abonyi

The application of white box models in digital twins is often hindered by missing knowledge, uncertain information and computational difficulties. Our aim was to overview the difficulties and challenges regarding the modelling aspects of digital twin applications and to explore the fields where surrogate models can be utilised advantageously. In this sense, the paper discusses what types of surrogate models are suitable for different practical problems as well as introduces the appropriate techniques for building and using these models. A number of examples of digital twin applications from both continuous processes and discrete manufacturing are presented to underline the potentials of utilising surrogate models. The surrogate models and model-building methods are categorised according to the area of applications. The importance of keeping these models up to date through their whole model life cycle is also highlighted. An industrial case study is also presented to demonstrate the applicability of the concept.


Author(s):  
D. J. Wagg ◽  
K. Worden ◽  
R. J. Barthorpe ◽  
P. Gardner

Abstract This paper presents a review of the state of the art for digital twins in the application domain of engineering dynamics. The focus on applications in dynamics is because: (i) they offer some of the most challenging aspects of creating an effective digital twin, and (ii) they are relevant to important industrial applications such as energy generation and transport systems. The history of the digital twin is discussed first, along with a review of the associated literature; the process of synthesizing a digital twin is then considered, including definition of the aims and objectives of the digital twin. An example of the asset management phase for a wind turbine is included in order to demonstrate how the synthesis process might be applied in practice. In order to illustrate modeling issues arising in the construction of a digital twin, a detailed case study is presented, based on a physical twin, which is a small-scale three-story structure. This case study shows the progression toward a digital twin highlighting key processes including system identification, data-augmented modeling, and verification and validation. Finally, a discussion of some open research problems and technological challenges is given, including workflow, joints, uncertainty management, and the quantification of trust. In a companion paper, as part of this special issue, a mathematical framework for digital twin applications is developed, and together the authors believe this represents a firm framework for developing digital twin applications in the area of engineering dynamics.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7830
Author(s):  
Paweł Stączek ◽  
Jakub Pizoń ◽  
Wojciech Danilczuk ◽  
Arkadiusz Gola

The contemporary market creates a demand for continuous improvement of production, service, and management processes. Increasingly advanced IT technologies help designers to meet this demand, as they allow them to abandon classic design and design-testing methods in favor of techniques that do not require the use of real-life systems and thus significantly reduce the costs and time of implementing new solutions. This is particularly important when re-engineering production and logistics processes in existing production companies, where physical testing is often infeasible as it would require suspension of production for the testing period. In this article, we showed how the Digital Twin technology can be used to test the operating environment of an autonomous mobile robot (AMR). In particular, the concept of the Digital Twin was used to assess the correctness of the design assumptions adopted for the early phase of the implementation of an AMR vehicle in a company’s production hall. This was done by testing and improving the case of a selected intralogistics task in a potentially “problematic” part of the shop floor with narrow communication routes. Three test scenarios were analyzed. The results confirmed that the use of digital twins could accelerate the implementation of automated intralogistics systems and reduce its costs.


Sign in / Sign up

Export Citation Format

Share Document