scholarly journals Nondestructive Classification of Soybean Seed Varieties by Hyperspectral Imaging and Ensemble Machine Learning Algorithms

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6980
Author(s):  
Yanlin Wei ◽  
Xiaofeng Li ◽  
Xin Pan ◽  
Lei Li

During the processing and planting of soybeans, it is greatly significant that a reliable, rapid, and accurate technique is used to detect soybean varieties. Traditional chemical analysis methods of soybean variety sampling (e.g., mass spectrometry and high-performance liquid chromatography) are destructive and time-consuming. In this paper, a robust and accurate method for nondestructive soybean classification is developed through hyperspectral imaging and ensemble machine learning algorithms. Image acquisition, preprocessing, and feature selection are used to obtain different types of soybean hyperspectral features. Based on these features, one of ensemble classifiers-random subspace linear discriminant (RSLD) algorithm is used to classify soybean seeds. Compared with the linear discrimination (LD) and linear support vector machine (LSVM) methods, the results show that the RSLD algorithm in this paper is more stable and reliable. In classifying soybeans in 10, 15, 20, and 25 categories, the RSLD method achieves the highest classification accuracy. When 155 features are used to classify 15 types of soybeans, the classification accuracy of the RSLD method reaches 99.2%, while the classification accuracies of the LD and LSVM methods are only 98.6% and 69.7%, respectively. Therefore, the ensemble classification algorithm RSLD can maintain high classification accuracy when different types and different classification features are used.

Author(s):  
Shahadat Uddin ◽  
Arif Khan ◽  
Md Ekramul Hossain ◽  
Mohammad Ali Moni

Abstract Background Supervised machine learning algorithms have been a dominant method in the data mining field. Disease prediction using health data has recently shown a potential application area for these methods. This study aims to identify the key trends among different types of supervised machine learning algorithms, and their performance and usage for disease risk prediction. Methods In this study, extensive research efforts were made to identify those studies that applied more than one supervised machine learning algorithm on single disease prediction. Two databases (i.e., Scopus and PubMed) were searched for different types of search items. Thus, we selected 48 articles in total for the comparison among variants supervised machine learning algorithms for disease prediction. Results We found that the Support Vector Machine (SVM) algorithm is applied most frequently (in 29 studies) followed by the Naïve Bayes algorithm (in 23 studies). However, the Random Forest (RF) algorithm showed superior accuracy comparatively. Of the 17 studies where it was applied, RF showed the highest accuracy in 9 of them, i.e., 53%. This was followed by SVM which topped in 41% of the studies it was considered. Conclusion This study provides a wide overview of the relative performance of different variants of supervised machine learning algorithms for disease prediction. This important information of relative performance can be used to aid researchers in the selection of an appropriate supervised machine learning algorithm for their studies.


2020 ◽  
Vol 10 (17) ◽  
pp. 5956
Author(s):  
Sławomir K. Zieliński ◽  
Hyunkook Lee ◽  
Paweł Antoniuk ◽  
Oskar Dadan

The purpose of this paper is to compare the performance of human listeners against the selected machine learning algorithms in the task of the classification of spatial audio scenes in binaural recordings of music under practical conditions. The three scenes were subject to classification: (1) music ensemble (a group of musical sources) located in the front, (2) music ensemble located at the back, and (3) music ensemble distributed around a listener. In the listening test, undertaken remotely over the Internet, human listeners reached the classification accuracy of 42.5%. For the listeners who passed the post-screening test, the accuracy was greater, approaching 60%. The above classification task was also undertaken automatically using four machine learning algorithms: convolutional neural network, support vector machines, extreme gradient boosting framework, and logistic regression. The machine learning algorithms substantially outperformed human listeners, with the classification accuracy reaching 84%, when tested under the binaural-room-impulse-response (BRIR) matched conditions. However, when the algorithms were tested under the BRIR mismatched scenario, the accuracy obtained by the algorithms was comparable to that exhibited by the listeners who passed the post-screening test, implying that the machine learning algorithms capability to perform in unknown electro-acoustic conditions needs to be further improved.


2020 ◽  
Vol 38 (1) ◽  
pp. 65-80 ◽  
Author(s):  
Ammara Zamir ◽  
Hikmat Ullah Khan ◽  
Tassawar Iqbal ◽  
Nazish Yousaf ◽  
Farah Aslam ◽  
...  

Purpose This paper aims to present a framework to detect phishing websites using stacking model. Phishing is a type of fraud to access users’ credentials. The attackers access users’ personal and sensitive information for monetary purposes. Phishing affects diverse fields, such as e-commerce, online business, banking and digital marketing, and is ordinarily carried out by sending spam emails and developing identical websites resembling the original websites. As people surf the targeted website, the phishers hijack their personal information. Design/methodology/approach Features of phishing data set are analysed by using feature selection techniques including information gain, gain ratio, Relief-F and recursive feature elimination (RFE) for feature selection. Two features are proposed combining the strongest and weakest attributes. Principal component analysis with diverse machine learning algorithms including (random forest [RF], neural network [NN], bagging, support vector machine, Naïve Bayes and k-nearest neighbour) is applied on proposed and remaining features. Afterwards, two stacking models: Stacking1 (RF + NN + Bagging) and Stacking2 (kNN + RF + Bagging) are applied by combining highest scoring classifiers to improve the classification accuracy. Findings The proposed features played an important role in improving the accuracy of all the classifiers. The results show that RFE plays an important role to remove the least important feature from the data set. Furthermore, Stacking1 (RF + NN + Bagging) outperformed all other classifiers in terms of classification accuracy to detect phishing website with 97.4% accuracy. Originality/value This research is novel in this regard that no previous research focusses on using feed forward NN and ensemble learners for detecting phishing websites.


2021 ◽  
Vol 10 (1) ◽  
pp. 42
Author(s):  
Kieu Anh Nguyen ◽  
Walter Chen ◽  
Bor-Shiun Lin ◽  
Uma Seeboonruang

Although machine learning has been extensively used in various fields, it has only recently been applied to soil erosion pin modeling. To improve upon previous methods of quantifying soil erosion based on erosion pin measurements, this study explored the possible application of ensemble machine learning algorithms to the Shihmen Reservoir watershed in northern Taiwan. Three categories of ensemble methods were considered in this study: (a) Bagging, (b) boosting, and (c) stacking. The bagging method in this study refers to bagged multivariate adaptive regression splines (bagged MARS) and random forest (RF), and the boosting method includes Cubist and gradient boosting machine (GBM). Finally, the stacking method is an ensemble method that uses a meta-model to combine the predictions of base models. This study used RF and GBM as the meta-models, decision tree, linear regression, artificial neural network, and support vector machine as the base models. The dataset used in this study was sampled using stratified random sampling to achieve a 70/30 split for the training and test data, and the process was repeated three times. The performance of six ensemble methods in three categories was analyzed based on the average of three attempts. It was found that GBM performed the best among the ensemble models with the lowest root-mean-square error (RMSE = 1.72 mm/year), the highest Nash-Sutcliffe efficiency (NSE = 0.54), and the highest index of agreement (d = 0.81). This result was confirmed by the spatial comparison of the absolute differences (errors) between model predictions and observations using GBM and RF in the study area. In summary, the results show that as a group, the bagging method and the boosting method performed equally well, and the stacking method was third for the erosion pin dataset considered in this study.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4324
Author(s):  
Moaed A. Abd ◽  
Rudy Paul ◽  
Aparna Aravelli ◽  
Ou Bai ◽  
Leonel Lagos ◽  
...  

Multifunctional flexible tactile sensors could be useful to improve the control of prosthetic hands. To that end, highly stretchable liquid metal tactile sensors (LMS) were designed, manufactured via photolithography, and incorporated into the fingertips of a prosthetic hand. Three novel contributions were made with the LMS. First, individual fingertips were used to distinguish between different speeds of sliding contact with different surfaces. Second, differences in surface textures were reliably detected during sliding contact. Third, the capacity for hierarchical tactile sensor integration was demonstrated by using four LMS signals simultaneously to distinguish between ten complex multi-textured surfaces. Four different machine learning algorithms were compared for their successful classification capabilities: K-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), and neural network (NN). The time-frequency features of the LMSs were extracted to train and test the machine learning algorithms. The NN generally performed the best at the speed and texture detection with a single finger and had a 99.2 ± 0.8% accuracy to distinguish between ten different multi-textured surfaces using four LMSs from four fingers simultaneously. The capability for hierarchical multi-finger tactile sensation integration could be useful to provide a higher level of intelligence for artificial hands.


Author(s):  
Pratyush Kaware

In this paper a cost-effective sensor has been implemented to read finger bend signals, by attaching the sensor to a finger, so as to classify them based on the degree of bent as well as the joint about which the finger was being bent. This was done by testing with various machine learning algorithms to get the most accurate and consistent classifier. Finally, we found that Support Vector Machine was the best algorithm suited to classify our data, using we were able predict live state of a finger, i.e., the degree of bent and the joints involved. The live voltage values from the sensor were transmitted using a NodeMCU micro-controller which were converted to digital and uploaded on a database for analysis.


Author(s):  
Gudipally Chandrashakar

In this article, we used historical time series data up to the current day gold price. In this study of predicting gold price, we consider few correlating factors like silver price, copper price, standard, and poor’s 500 value, dollar-rupee exchange rate, Dow Jones Industrial Average Value. Considering the prices of every correlating factor and gold price data where dates ranging from 2008 January to 2021 February. Few algorithms of machine learning are used to analyze the time-series data are Random Forest Regression, Support Vector Regressor, Linear Regressor, ExtraTrees Regressor and Gradient boosting Regression. While seeing the results the Extra Tree Regressor algorithm gives the predicted value of gold prices more accurately.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 684 ◽  
Author(s):  
V V. Ramalingam ◽  
Ayantan Dandapath ◽  
M Karthik Raja

Heart related diseases or Cardiovascular Diseases (CVDs) are the main reason for a huge number of death in the world over the last few decades and has emerged as the most life-threatening disease, not only in India but in the whole world. So, there is a need of reliable, accurate and feasible system to diagnose such diseases in time for proper treatment. Machine Learning algorithms and techniques have been applied to various medical datasets to automate the analysis of large and complex data. Many researchers, in recent times, have been using several machine learning techniques to help the health care industry and the professionals in the diagnosis of heart related diseases. This paper presents a survey of various models based on such algorithms and techniques andanalyze their performance. Models based on supervised learning algorithms such as Support Vector Machines (SVM), K-Nearest Neighbour (KNN), NaïveBayes, Decision Trees (DT), Random Forest (RF) and ensemble models are found very popular among the researchers.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3532 ◽  
Author(s):  
Nicola Mansbridge ◽  
Jurgen Mitsch ◽  
Nicola Bollard ◽  
Keith Ellis ◽  
Giuliana Miguel-Pacheco ◽  
...  

Grazing and ruminating are the most important behaviours for ruminants, as they spend most of their daily time budget performing these. Continuous surveillance of eating behaviour is an important means for monitoring ruminant health, productivity and welfare. However, surveillance performed by human operators is prone to human variance, time-consuming and costly, especially on animals kept at pasture or free-ranging. The use of sensors to automatically acquire data, and software to classify and identify behaviours, offers significant potential in addressing such issues. In this work, data collected from sheep by means of an accelerometer/gyroscope sensor attached to the ear and collar, sampled at 16 Hz, were used to develop classifiers for grazing and ruminating behaviour using various machine learning algorithms: random forest (RF), support vector machine (SVM), k nearest neighbour (kNN) and adaptive boosting (Adaboost). Multiple features extracted from the signals were ranked on their importance for classification. Several performance indicators were considered when comparing classifiers as a function of algorithm used, sensor localisation and number of used features. Random forest yielded the highest overall accuracies: 92% for collar and 91% for ear. Gyroscope-based features were shown to have the greatest relative importance for eating behaviours. The optimum number of feature characteristics to be incorporated into the model was 39, from both ear and collar data. The findings suggest that one can successfully classify eating behaviours in sheep with very high accuracy; this could be used to develop a device for automatic monitoring of feed intake in the sheep sector to monitor health and welfare.


Sign in / Sign up

Export Citation Format

Share Document