scholarly journals Microfluidic Modules Integrated with Microwave Components—Overview of Applications from the Perspective of Different Manufacturing Technologies

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1710
Author(s):  
Laura Jasińska ◽  
Karol Malecha

The constant increase in the number of microfluidic-microwave devices can be explained by various advantages, such as relatively easy integration of various microwave circuits in the device, which contains microfluidic components. To achieve the aforementioned solutions, four trends of manufacturing appear—manufacturing based on epoxy-glass laminates, polymer materials (mostly common in use are polydimethylsiloxane (PDMS) and polymethyl 2-methylpropenoate (PMMA)), glass/silicon substrates, and Low-Temperature Cofired Ceramics (LTCCs). Additionally, the domains of applications the microwave-microfluidic devices can be divided into three main fields—dielectric heating, microwave-based detection in microfluidic devices, and the reactors for microwave-enhanced chemistry. Such an approach allows heating or delivering the microwave power to the liquid in the microchannels, as well as the detection of its dielectric parameters. This article consists of a literature review of exemplary solutions that are based on the above-mentioned technologies with the possibilities, comparison, and exemplary applications based on each aforementioned technology.

2015 ◽  
Vol 107 (26) ◽  
pp. 261107 ◽  
Author(s):  
Zihao Wang ◽  
Ruizhe Yao ◽  
Stefan F. Preble ◽  
Chi-Sen Lee ◽  
Luke F. Lester ◽  
...  

Author(s):  
Yang Han ◽  
Chi Dang ◽  
Evert Visker ◽  
Jakob Visker ◽  
Aurelie Humbertv ◽  
...  

1995 ◽  
Vol 378 ◽  
Author(s):  
Xiaojun Deng ◽  
Bhushan L. Sopori

AbstractThe diffusivity of deuterium (D) at 250°C was determined in silicon samples grown by different techniques. It is found that the diffusivity increases with the growth speed, increase in carbon content and a decrease in oxygen concentration of the substrate. These growth conditions correlate well with the concentration of vacancy-type defects in the as-grown state. Hence, we conclude that a vacancy mechanism is responsible for low-temperature hydrogen diffusion in silicon. The highest diffusivity for hydrogen, calculated from these data, was found to be 3 × 10−7 cm2/s.


2018 ◽  
Vol 2018 (1) ◽  
pp. 000728-000733
Author(s):  
Piotr Mackowiak ◽  
Rachid Abdallah ◽  
Martin Wilke ◽  
Jash Patel ◽  
Huma Ashraf ◽  
...  

Abstract In the present work we investigate the quality of low temperature Plasma Enhanced Chemical Vapor Deposition (PECVD) and plasma treated Tetraethyl orthosilicate (TEOS)-based TSV-liner films. Different designs of Trough Silicon Via (TSV) Test structures with 10μm and 20μm width and a depth of 100μm have been fabricated. Two differently doped silicon substrates have been used – highly p-doped and moderately doped. The results for break-through, resistivity and capacitance for the 20μm structures show a better performance compared to the 10μm structures. This is mainly due to increased liner thickness in the reduced aspect ratio case. Lower interface traps and oxide charge densities have been observed in the C-V measurements results for the 10μm structures.


Author(s):  
Doriano Brogioli ◽  
Fabio LaMantia

The scientific community has taken on the challenge to develop innovative methods to exploit low-temperature (<100°C) heat sources, having a large potential to decrease the carbon footprint. In this review,...


Biosensors ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 21 ◽  
Author(s):  
Isabel Sayago ◽  
Manuel Aleixandre ◽  
José Pedro Santos

Tin oxide nanofibres (NFs) are used as nanosensors in electronic noses. Their performance is compared to that of oxide commercial chemical sensors for pollutant detection. NFs were grown by electrospinning and deposited onto silicon substrates with integrated micro-hotplates. NF morphology was characterized by scanning electron microscopy (SEM). The NFs presented high sensitivity to NO2 at low temperature.


Sign in / Sign up

Export Citation Format

Share Document