scholarly journals Non-Contact Respiratory Monitoring Using an RGB Camera for Real-World Applications

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5126
Author(s):  
Chiara Romano ◽  
Emiliano Schena ◽  
Sergio Silvestri ◽  
Carlo Massaroni

Respiratory monitoring is receiving growing interest in different fields of use, ranging from healthcare to occupational settings. Only recently, non-contact measuring systems have been developed to measure the respiratory rate (fR) over time, even in unconstrained environments. Promising methods rely on the analysis of video-frames features recorded from cameras. In this work, a low-cost and unobtrusive measuring system for respiratory pattern monitoring based on the analysis of RGB images recorded from a consumer-grade camera is proposed. The system allows (i) the automatized tracking of the chest movements caused by breathing, (ii) the extraction of the breathing signal from images with methods based on optical flow (FO) and RGB analysis, (iii) the elimination of breathing-unrelated events from the signal, (iv) the identification of possible apneas and, (v) the calculation of fR value every second. Unlike most of the work in the literature, the performances of the system have been tested in an unstructured environment considering user-camera distance and user posture as influencing factors. A total of 24 healthy volunteers were enrolled for the validation tests. Better performances were obtained when the users were in sitting position. FO method outperforms in all conditions. In the fR range 6 to 60 breaths/min (bpm), the FO allows measuring fR values with bias of −0.03 ± 1.38 bpm and −0.02 ± 1.92 bpm when compared to a reference wearable system with the user at 2 and 0.5 m from the camera, respectively.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Supakorn Harnsoongnoen ◽  
Nuananong Jaroensuk

AbstractThe water displacement and flotation are two of the most accurate and rapid methods for grading and assessing freshness of agricultural products based on density determination. However, these techniques are still not suitable for use in agricultural inspections of products such as eggs that absorb water which can be considered intrusive or destructive and can affect the result of measurements. Here we present a novel proposal for a method of non-destructive, non-invasive, low cost, simple and real—time monitoring of the grading and freshness assessment of eggs based on density detection using machine vision and a weighing sensor. This is the first proposal that divides egg freshness into intervals through density measurements. The machine vision system was developed for the measurement of external physical characteristics (length and breadth) of eggs for evaluating their volume. The weighing system was developed for the measurement of the weight of the egg. Egg weight and volume were used to calculate density for grading and egg freshness assessment. The proposed system could measure the weight, volume and density with an accuracy of 99.88%, 98.26% and 99.02%, respectively. The results showed that the weight and freshness of eggs stored at room temperature decreased with storage time. The relationship between density and percentage of freshness was linear for the all sizes of eggs, the coefficient of determination (R2) of 0.9982, 0.9999, 0.9996, 0.9996 and 0.9994 for classified egg size classified 0, 1, 2, 3 and 4, respectively. This study shows that egg freshness can be determined through density without using water to test for water displacement or egg flotation which has future potential as a measuring system important for the poultry industry.


2014 ◽  
Vol 615 ◽  
pp. 57-62 ◽  
Author(s):  
Raquel Acero Cacho ◽  
Jose Antonio Albajez ◽  
José Antonio Yagüe-Fabra ◽  
Marta Torralba ◽  
Margarita Valenzuela ◽  
...  

The nanotechnology field has been developing strongly in recent years and ultra-precision measuring systems are nowadays required. A new two-dimensional moving platform with 50x50 mm range of travel, nanometer resolution and sub micrometer accuracy is being designed by the authors in order to be integrated with an Atomic Force Microscope (AFM). In this work the definition, design and experimental characterization of a homing sensor system for this 2D moving platform is presented. The homing sensor system will allow the generation of an absolute 2D reference for the platform (X-Y axis and θz rotation), defining an initial cero for the measuring system, which is based on laser encoders.


Author(s):  
Jing Li ◽  
Dingyong Yu ◽  
Huaxing Liu

The passive acoustic-based wave measurement via hydrophones is presented in this paper. It has the potential to measure non-intrusively, implement with low cost and with higher resolution. Details of experiments, real-time data recording and processing are described respectively. Particularly, the portable data acquisition system based on virtual instrument technique is designed to make the in situ measurement convenient and user-friendly. Special emphasis is put on FFT filtering technique to band pass the signal fast and efficiently. The key wave parameters, i.e. the mean wave period and the significant wave height, can be obtained from the comparatively safe and stable underwater by means of submerged hydrophones. Considering the pressure sensor has been widely used in the ocean wave measurement, it is deployed simultaneously to test the feasibility of the new system. The result shows that the present measuring system can give satisfactory measurement of significant wave heights and average wave periods in shallow water despite of the little deviation.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Carlo Massaroni ◽  
Daniel Simões Lopes ◽  
Daniela Lo Presti ◽  
Emiliano Schena ◽  
Sergio Silvestri

Vital signs monitoring is pivotal not only in clinical settings but also in home environments. Remote monitoring devices, systems, and services are emerging as tracking vital signs must be performed on a daily basis. Different types of sensors can be used to monitor breathing patterns and respiratory rate. However, the latter remains the least measured vital sign in several scenarios due to the intrusiveness of most adopted sensors. In this paper, we propose an inexpensive, off-the-shelf, and contactless measuring system for respiration signals taking as region of interest the pit of the neck. The system analyses video recorded by a single RGB camera and extracts the respiratory pattern from intensity variations of reflected light at the level of the collar bones and above the sternum. Breath-by-breath respiratory rate is then estimated from the processed breathing pattern. In addition, the effect of image resolution on monitoring breathing patterns and respiratory rate has been investigated. The proposed system was tested on twelve healthy volunteers (males and females) during quiet breathing at different sensor resolution (i.e., HD 720, PAL, WVGA, VGA, SVGA, and NTSC). Signals collected with the proposed system have been compared against a reference signal in both the frequency domain and time domain. By using the HD 720 resolution, frequency domain analysis showed perfect agreement between average breathing frequency values gathered by the proposed measuring system and reference instrument. An average mean absolute error (MAE) of 0.55 breaths/min was assessed in breath-by-breath monitoring in the time domain, while Bland-Altman showed a bias of −0.03 ± 1.78 breaths/min. Even in the case of lower camera resolution setting (i.e., NTSC), the system demonstrated good performances (MAE of 1.53 breaths/min, bias of −0.06 ± 2.08 breaths/min) for contactless monitoring of both breathing pattern and breath-by-breath respiratory rate over time.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Quoc Khanh Duong ◽  
Thanh Trung Trang ◽  
Thanh Long Pham

It is easy to realize that most robots do not move to the desired endpoint (Tool Center Point (TCP)) using high-resolution noncontact instrumentation because of manufacturing and assembly errors, transmission system errors, and mechanical wear. This paper presents a robot calibration solution by changing the endpoint trajectories while maintaining the robot’s control system and device usages. Two independent systems to measure the endpoint positions, the robot encoder and a noncontact measuring system with a high-resolution camera, are used to determine the endpoint errors. A new trajectory based on the measured errors will be built to replace the original trajectory. The results show that the proposed method can significantly reduce errors; moreover, this is a low-cost solution and easy to apply in practice and calibration can be done cyclically. The only requirement for this method is a noncontact measuring device with high-resolution and located independently with the robot in calibration.


Author(s):  
Kelly S. Moreira ◽  
Diana Lermen ◽  
Leandra P. dos Santos ◽  
Fernando Galembeck ◽  
Thiago A. L. Burgo

Converting humidity into useful electrical energy was only recently demonstrated and the improvements presented in this work are not only highly energy efficient, but also contributes to the development of scalable, real-world applications.


2020 ◽  
Vol 10 (12) ◽  
pp. 353
Author(s):  
Shaya Wolf ◽  
Andrea Carneal Burrows ◽  
Mike Borowczak ◽  
Mason Johnson ◽  
Rafer Cooley ◽  
...  

Research on innovative, integrated outreach programs guided three separate week-long outreach camps held across two summers (2018 and 2019). These camps introduced computer science through real-world applications and hands-on activities, each dealing with cybersecurity principles. The camps utilized low-cost hardware and free software to provide a total of 84 students (aged 10 to 18 years) a unique learning experience. Based on feedback from the 2018 camp, a new pre/post survey was developed to assess changes in participant knowledge and interest. Student participants in the 2019 iteration showed drastic changes in their cybersecurity content recall (33% pre vs. 96% post), cybersecurity concept identification within real-world scenarios, and exhibited an increased ability to recognize potential cybersecurity threats in their every-day lives (22% pre vs. 69% post). Finally, students’ self-reported interest-level before and after the camp show a positive increase across all student participants, with the number of students who where highly interested in cybersecurity more than doubling from 31% pre-camp to 65% post-camp. Implications for educators are large as these activities and experiences can be interwoven into traditional schooling as well as less formal camps as pure computer science or through integrated STEM.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3947 ◽  
Author(s):  
Zhonglin Cao ◽  
Ping Chen ◽  
Zhong Ma ◽  
Sheng Li ◽  
Xingxun Gao ◽  
...  

Near-field communication is a new kind of low-cost wireless communication technology developed in recent years, which brings great convenience to daily life activities such as medical care, food quality detection, and commerce. The integration of near-field communication devices and sensors exhibits great potential for these real-world applications by endowing sensors with new features of powerless and wireless signal transferring and conferring near field communication device with sensing function. In this review, we summarize recent progress in near field communication sensors, including the development of materials and device design and their applications in wearable personal healthcare devices. The opportunities and challenges in near-field communication sensors are discussed in the end.


2011 ◽  
Vol 135-136 ◽  
pp. 852-855
Author(s):  
Yin Ping Jiang ◽  
Shan Liu ◽  
Yun Hua Yang

At present, the energy crisis is increasingly serious. Energy-saving becomes a practical issues faced by all fields in the life. Considering this, the paper presents a new vehicle consumption measuring system based on intelligent handling and humane design under the promise of accurate measurement as well as low cost. In addition, the use of radio frequency communication technology makes precise measurement of instant and accumulative fuel consumption come true in any working hours. Field experiment results show that the vehicle fuel consumption measuring system has character of facilitate operation, low cost, advanced and reliable measurement method and high accuracy (within 1.5%). It can improve greatly the production efficiency of the internal combustion machine and avoid effectively the waste phenomenon, and be prone to make further application widely.


Sign in / Sign up

Export Citation Format

Share Document