scholarly journals An Array of On-Chip Integrated, Individually Addressable Capacitive Field-Effect Sensors with Control Gate: Design and Modelling

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6161
Author(s):  
Arshak Poghossian ◽  
Rene Welden ◽  
Vahe V. Buniatyan ◽  
Michael J. Schöning

The on-chip integration of multiple biochemical sensors based on field-effect electrolyte-insulator-semiconductor capacitors (EISCAP) is challenging due to technological difficulties in realization of electrically isolated EISCAPs on the same Si chip. In this work, we present a new simple design for an array of on-chip integrated, individually electrically addressable EISCAPs with an additional control gate (CG-EISCAP). The existence of the CG enables an addressable activation or deactivation of on-chip integrated individual CG-EISCAPs by simple electrical switching the CG of each sensor in various setups, and makes the new design capable for multianalyte detection without cross-talk effects between the sensors in the array. The new designed CG-EISCAP chip was modelled in so-called floating/short-circuited and floating/capacitively-coupled setups, and the corresponding electrical equivalent circuits were developed. In addition, the capacitance-voltage curves of the CG-EISCAP chip in different setups were simulated and compared with that of a single EISCAP sensor. Moreover, the sensitivity of the CG-EISCAP chip to surface potential changes induced by biochemical reactions was simulated and an impact of different parameters, such as gate voltage, insulator thickness and doping concentration in Si, on the sensitivity has been discussed.

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 239
Author(s):  
Yineng Wang ◽  
Xi Cao ◽  
Walter Messina ◽  
Anna Hogan ◽  
Justina Ugwah ◽  
...  

Capillary electrochromatography (CEC) is a separation technique that hybridizes liquid chromatography (LC) and capillary electrophoresis (CE). The selectivity offered by LC stationary phase results in rapid separations, high efficiency, high selectivity, minimal analyte and buffer consumption. Chip-based CE and CEC separation techniques are also gaining interest, as the microchip can provide precise on-chip control over the experiment. Capacitively coupled contactless conductivity detection (C4D) offers the contactless electrode configuration, and thus is not in contact with the solutions under investigation. This prevents contamination, so it can be easy to use as well as maintain. This study investigated a chip-based CE/CEC with C4D technique, including silicon-based microfluidic device fabrication processes with packaging, design and optimization. It also examined the compatibility of the silicon-based CEC microchip interfaced with C4D. In this paper, the authors demonstrated a nanofabrication technique for a novel microchip electrochromatography (MEC) device, whose capability is to be used as a mobile analytical equipment. This research investigated using samples of potassium ions, sodium ions and aspirin (acetylsalicylic acid).


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 187 ◽  
Author(s):  
Kamil Bargieł ◽  
Damian Bisewski ◽  
Janusz Zarębski

The paper deals with the problem of modelling and analyzing the dynamic properties of a Junction Field Effect Transistor (JFET) made of silicon carbide. An examination of the usefulness of the built-in JFET Simulation Program with Integrated Circuit Emphasis (SPICE) model was performed. A modified model of silicon carbide JFET was proposed to increase modelling accuracy. An evaluation of the accuracy of the modified model was performed by comparison of the measured and calculated capacitance–voltage characteristics as well as the switching characteristics of JFETs.


2014 ◽  
Vol 525 ◽  
pp. 287-291
Author(s):  
Li Xian Xiao ◽  
Yong Tai He ◽  
Yue Hong Peng ◽  
Jin Hao Liu

The influence factors of Photovoltaic (PV) cells characteristics integrated on chip were analyzed based on the fabrication process and the structure of the PV cells and CMOS devices. The results show the substrate doping concentration, the emitter doping concentration, the emitter junction depth and the thickness of device layer directly determine the conversion efficiency, open voltage and the light-generated current of photovoltaic cells. In the emitter doping concentration range of 1×1019/cm3 to 1×1021/cm3 and the substrate doping concentration range of 1.0×1015/cm3 to 1.0×1017/cm3, the Photovoltaic cells have batter conversion characteristics. The PV cells were designed based on the analysis results in PC1D, and the conversion efficiency is 9.43%. The Photovoltaic cells and the CMOS devices have batter fabrication technology compatibility integrated on chip.


The Analyst ◽  
2013 ◽  
Vol 138 (15) ◽  
pp. 4275 ◽  
Author(s):  
Leigh D. Thredgold ◽  
Dmitriy A. Khodakov ◽  
Amanda V. Ellis ◽  
Claire E. Lenehan

2017 ◽  
Vol 16 (1) ◽  
pp. 69-74
Author(s):  
Md Iktiham Bin Taher ◽  
Md. Tanvir Hasan

Gallium nitride (GaN) based metal-oxide semiconductor field-effect transistors (MOSFETs) are promising for switching device applications. The doping of n- and p-layers is varied to evaluate the figure of merits of proposed devices with a gate length of 10 nm. Devices are switched from OFF-state (gate voltage, VGS = 0 V) to ON-state (VGS = 1 V) for a fixed drain voltage, VDS = 0.75 V. The device with channel doping of 1×1016 cm-3 and source/drain (S/D) of 1×1020 cm-3 shows good device performance due to better control of gate over channel. The ON-current (ION), OFF-current (IOFF), subthreshold swing (SS), drain induce barrier lowering (DIBL), and delay time are found to be 6.85 mA/μm, 5.15×10-7 A/μm, 87.8 mV/decade, and 100.5 mV/V, 0.035 ps, respectively. These results indicate that GaN-based MOSFETs are very suitable for the logic switching application in nanoscale regime.


2016 ◽  
Vol 858 ◽  
pp. 197-200 ◽  
Author(s):  
Ruggero Anzalone ◽  
Marco Salanitri ◽  
Simona Lorenti ◽  
Alberto Campione ◽  
Nicolò Piluso ◽  
...  

Doping incorporation and good uniformity along the wafer it is a mandatory for application in high voltage electronic devices. In this work the effect of the Hydrogen (H) flux position inside the reaction chamber on homo-epitaxial 4H-SiC growth process has been studied. Capacitance-Voltage and FT-IR analyses show as the different position of the gas injector affect the doping and thickness uniformity and profile. On the other hand, By Candela and AFM analyses no morphological or surface influence by Hydrogen flux position has been observed.


Sign in / Sign up

Export Citation Format

Share Document