scholarly journals TOF-Based Fast Self-Positioning Algorithm for UWB Mobile Base Stations

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6359
Author(s):  
Yuxiang Han ◽  
Xiaoming Zhang ◽  
Zhengxi Lai ◽  
Yuchen Geng

To solve the problem of heavy workload and high cost when acquiring the position of Ultra-Wideband (UWB) mobile base stations in sports fields, a fast self-positioning algorithm for UWB mobile base stations algorithm based on Time of Flight (TOF) is proposed. First, according to the layout of the base stations in the sports field, the local coordinate system is determined, and an equation based on the ranging information between the base stations is established; the Least Square method is used to calculate the coordinates of each base station, and the Newton Iteration method is used to converge the positioning results. Then the origin and propagation law of positioning error, as well as the method of reducing the positioning error are analyzed. The simulation data and experimental results show that the average positioning accuracy of the mobile base station is within 0.05 m, which meets the expected accuracy of the base station position measurement. Compared with traditional manual measurement methods, base station self-positioning can effectively save deployment time and reduce workload.

Author(s):  
Walder de Jesús Canova García

Resumen El creciente número de estaciones base de telefonía móvil celular alrededor de sectores residenciales o tránsito de personas, causa preocupación en la comunidad sobre si la radiación de campos electromagnéticos puedan causar riesgos en la salud. Internacionalmente existen estándares que establecen límites a las diversas fuentes de campos electromagnéticos para garantizar que se minimizan los riesgos en la salud. Cada país adopta dentro de su legislación algún estándar o recomendación y exige su cumplimiento a los operadores de estaciones de telecomunicaciones, por ejemplo en Colombia rige el decreto 195 de 2005. El artículo presenta una evaluación, basados en mediciones técnicas en el 2010, para obtener los niveles de exposición a campos electromagnéticos generados por las antenas instaladas en las estaciones base de telefonía móvil. Luego aparece el procedimiento general de mediciones, donde incluye el plan ejecutorial de mediciones, la configuración de la instrumentación y la caracterización de los lugares y puntos de medición. Por último, los resultados medidos en algunos lugares, donde las antenas de transmisión cumplían con la normativa adoptada en Colombia. Palabras Clave: Exposición a campos Electromagnéticos, Estaciones base de Telefonía móvil celular, Mediciones de banda angosta.   Abstract The growth of installations of transmitting antennas on base stations surrounding residential spaces or person traffic causes concerns in the community, about whether the radiation of electromagnetic fields of transmitting antennas in mobile base station can generate health risk. Over the world, there are standards that establish maximum levels permitted to different electromagnetic field sources to accomplish security ranges for health risks. Each country adopts in their legislation some international standard and requires to telecommunication operators stations for its compliance. In Colombian, the decree 195 of 2005 is still valid. This article shows an assessment, based on technical measurements developed in 2010, to acquire the electromagnetic field exposure levels generated by transmitting antennas installed on Mobile Base Station. This assessment includes the measurement system procedure: plan of measurement, instrumental configuration, and characterization of measurement places. Finally, here presents the measured results in some places, which exposure levels satisfied the adopted legislation in Colombia. Keywords: Electromagnetic Field Exposure, Mobile Base Stations, Narrowband Measurement.


Author(s):  
Vincent Anayochukwu Ani ◽  
Nzeako Anthony Ndubueze

This paper explores the best energy options by which the choice of the most energy optimized solution for a given GSM Base Station Site and location in any rural area in Nigeria can be made. The patterns of load consumption by mobile base stations at various geographical locations in rural areas are studied and suitably modeled for optimization using HOMER software. Simulation results show the optimized energy options to be superior to conventional solutions whereby diesel generators are currently used to power GSM Base Station Sites around Nigeria. Total Net Present Cost (NPC) and total impact on the environment are used as indices for measuring the optimization level of each energy solution. The solution with the highest optimization value is considered to be the best energy option for that Base Station Site.


Author(s):  
Shixun Wu ◽  
Min Li ◽  
Miao Zhang ◽  
Kai Xu ◽  
Juan Cao

AbstractMobile station (MS) localization in a cellular network is appealing to both industrial community and academia, due to the wide applications of location-based services. The main challenge is the unknown one-bound (OB) and multiple-bound (MB) scattering environment in dense multipath environment. Moreover, multiple base stations (BSs) are required to be involved in the localization process, and the precise time synchronization between MS and BSs is assumed. In order to address these problems, hybrid time of arrival (TOA), angle of departure (AOD), and angle of arrival (AOA) measurement model from the serving BS with the synchronization error is investigated in this paper. In OB scattering environment, four linear least square (LLS), one quadratic programming and data fusion-based localization algorithms are proposed to eliminate the effect of the synchronization error. In addition, the Cramer-Rao lower bound (CRLB) of our localization model on the root mean-square error (RMSE) is derived. In hybrid OB and MB scattering environment, a novel double identification algorithm (DIA) is proposed to identify the MB path. Simulation results demonstrate that the proposed algorithms are capable to deal with the synchronization error, and LLS-based localization algorithms show better localization accuracy. Furthermore, the DIA can correctly identify the MB path, and the RMSE comparison of different algorithms further prove the effectiveness of the DIA.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5824
Author(s):  
Dongqi Gao ◽  
Xiangye Zeng ◽  
Jingyi Wang ◽  
Yanmang Su

Various indoor positioning methods have been developed to solve the “last mile on Earth”. Ultra-wideband positioning technology stands out among all indoor positioning methods due to its unique communication mechanism and has a broad application prospect. Under non-line-of-sight (NLOS) conditions, the accuracy of this positioning method is greatly affected. Unlike traditional inspection and rejection of NLOS signals, all base stations are involved in positioning to improve positioning accuracy. In this paper, a Long Short-Term Memory (LSTM) network is used while maximizing the use of positioning equipment. The LSTM network is applied to process the raw Channel Impulse Response (CIR) to calculate the ranging error, and combined with the improved positioning algorithm to improve the positioning accuracy. It has been verified that the accuracy of the predicted ranging error is up to centimeter level. Using this prediction for the positioning algorithm, the average positioning accuracy improved by about 62%.


2018 ◽  
Vol 2 (2) ◽  
pp. 71-83
Author(s):  
Radhi Sahan ◽  
Haider Easa ◽  
Adheed Sallomi

Cellular mobile communication technology has grown exponentially in the last decade resulting in large number of base stations in areas at which people are living or working. All over the world, the electromagnetic pollution produced from cellular base stations erected in residential areas and its effect on the environment and human body is a problem that has been concerning the society for many years. This paper, introduces the effects of electromagnetic energy emitted cellular base stations on the biological systems of the human body. The induced electromagnetic fields (EMF), and specific absorption rate (SAR) were calculated in close proximity to cellular mobile base stations. The calculated values of SAR were compared with the most commonly used international limits. The results show that the electromagnetic radiation (EMR) exposure levels at a distance of several meters from the base station towers can cause hazardous effects to the public.


2014 ◽  
Vol 989-994 ◽  
pp. 2778-2781
Author(s):  
Hong Ma

With the rapid development of economy, the consumption of energy increasing year by year, the conventional energy is facing increasingly draining.The wind and light power supply system controller in the mobile base stations is a kind of power supply management system,used the wind and light, which have the biggest and the most development potential renewable energy and new energy technology at present.That especially suitable for mobile communication base station,and remote sensing, remote control base station power supply and operation environment. The controller can reduce run maintenance cost, improving the quality of communication and system management level,and the efficiency of the whole.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5703
Author(s):  
Salbiah Ab Hamid ◽  
Nurul Huda Abd Rahman ◽  
Yoshihide Yamada ◽  
Phan Van Hung ◽  
Dinh Nguyen Quoc

Narrow beam width, higher gain and multibeam characteristics are demanded in 5G technology. Array antennas that are utilized in the existing mobile base stations have many drawbacks when operating at upper 5G frequency bands. For example, due to the high frequency operation, the antenna elements become smaller and thus, in order to provide higher gain, more antenna elements and arrays are required, which will cause the feeding network design to be more complex. The lens antenna is one of the potential candidates to replace the current structure in mobile base station. Therefore, a negative refractive index shaped lens is proposed to provide high gain and narrow beamwidth using energy conservation and Abbe’s sine principle. The aim of this study is to investigate the multibeam characteristics of a negative refractive index shaped lens in mobile base station applications. In this paper, the feed positions for the multibeam are selected on the circle from the center of the lens and the accuracy of the feed position is validated through Electromagnetic (EM) simulation. Based on the analysis performed in this study, a negative refractive index shaped lens with a smaller radius and slender lens than the conventional lens is designed, with the additional capability of performing wide-angle beam scanning.


2014 ◽  
Vol 6 (5) ◽  
pp. 527-535 ◽  
Author(s):  
Mohamed S. El-Gendy ◽  
Haythem H. Abdullah ◽  
Esmat A. Abdallah

In this paper, a new configuration of dual-band, dual-polarized microstrip antenna applicable to mobile base stations is proposed. The concept behind the new design is the use of an artificial magnetic conductor (AMC) structure that operates in the required two bands beneath a radiating diamond shaped slot. The choice of the diamond-shaped slot is due to its support of an infinite number of resonant modes where the dimensions of the diamond shape have more degree of freedom that controls the excited modes when compared to the rectangular slot. The proposed antenna works over the 870–960 MHz (GSM850/GSM900) band and the 1710–2170 MHz (DCS1800/PCS1900/UMTS2100) bands for mobile communication systems. The antenna is suitable for transmitting and receiving mobile signals since it has two ports of orthogonal polarization. The antenna is fabricated on a combination of FR4 dielectric substrate and foam layers in order to achieve low cost. The proposed antenna yields high isolation between its two ports not exceeding −30 dB and a front-to-back ratio exceeding 15 dB. The average antenna gains are about 6.6 dBi at the GSM850/GSM900, 7.1 dBi at the DCS1800/PCS1900, and 6.8 dBi at the UMTS2100 bands. The theory of radiation is proved analytically and verified by comparing its results with some simulated results. Finally, a good agreement between the simulated and measured results is noticed.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4432 ◽  
Author(s):  
Shiwu Xu ◽  
Chih-Cheng Chen ◽  
Yi Wu ◽  
Xufang Wang ◽  
Fen Wei

The weighted K-nearest neighbor (WKNN) algorithm is a commonly used fingerprint positioning, the difficulty of which lies in how to optimize the value of K to obtain the minimum positioning error. In this paper, we propose an adaptive residual weighted K-nearest neighbor (ARWKNN) fingerprint positioning algorithm based on visible light communication. Firstly, the target matches the fingerprints according to the received signal strength indication (RSSI) vector. Secondly, K is a dynamic value according to the matched RSSI residual. Simulation results show the ARWKNN algorithm presents a reduced average positioning error when compared with random forest (81.82%), extreme learning machine (83.93%), artificial neural network (86.06%), grid-independent least square (60.15%), self-adaptive WKNN (43.84%), WKNN (47.81%), and KNN (73.36%). These results were obtained when the signal-to-noise ratio was set to 20 dB, and Manhattan distance was used in a two-dimensional (2-D) space. The ARWKNN algorithm based on Clark distance and minimum maximum distance metrics produces the minimum average positioning error in 2-D and 3-D, respectively. Compared with self-adaptive WKNN (SAWKNN), WKNN and KNN algorithms, the ARWKNN algorithm achieves a significant reduction in the average positioning error while maintaining similar algorithm complexity.


Author(s):  
Tongyan Li ◽  
Shuchun Hua ◽  
Le Kang ◽  
Sheng-Hung Chang

AbstractWith the support of GIS spatial analysis technology, based on an in-depth study of the wireless propagation environment of a city, combined with the analysis of project requirements, it proposes to use the SPM model to correct the propagation model parameters, using SPM. The wireless propagation model, and research and analysis of the SPM wireless propagation model correction algorithm, further corrected the parameters of a city's SPM wireless propagation model. On this basis, the propagation loss of several classic propagation models in different environments is compared, and the SPM propagation model suitable for the signal frequency band and propagation environment of this study is selected. The correction of the SPM propagation model is based on the designed correction principle and correction process, that is, the weighted least square method is used to fit and analyze the measured level data to obtain an SPM prediction improvement model with local characteristics, and according to the designed verification link. Evaluation of the correction results shows that the accuracy requirements are met. Based on the corrected SPM prediction model, link loss calculations were performed on the 13 test base stations studied in the experiment, and the effective coverage radius of each base station community was obtained. In combination with GIS technology, model parameters and workers of each base station participated in the electronic map loading of the area Go to the network planning software to get the wireless signal coverage prediction map of each base station. Finally, according to the technical requirements of the TD-LTE system network planning and network optimization engineering, the objectiveness and rationality of the site selection and number of base stations in the area were verified, and specific problems regarding poor coverage and overlapping coverage in the area were proposed.


Sign in / Sign up

Export Citation Format

Share Document