scholarly journals A Remote Raman System and Its Applications for Planetary Material Studies

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 6973
Author(s):  
Hongkun Qu ◽  
Zongcheng Ling ◽  
Xiaobin Qi ◽  
Yanqing Xin ◽  
Changqing Liu ◽  
...  

A remote Raman prototype with a function of excitation energy adjusting for the purpose of obtaining a Raman signal with good signal-to-noise ratio (SNR), saving power consumption, and possibly avoiding destroying a target by high energy pulses, which may have applications for Chinese planetary explorations, has been setup and demonstrated for detecting different minerals. The system consists of a spectrograph equipped with a thermoelectrically cooled charge-coupled device (CCD) detector, a telescope with 150 mm diameter and 1500 mm focus length, and a compact 1064 nm Nd:YAG Q-switched laser with an electrical adjusted pulse energy from 0 to 200 mJ/pulse. A KTP crystal was used for second harmonic generation in a 1064 nm laser to generate a 532 nm laser, which is the source of Raman scatting. Different laser pulse energies and integration time were used to obtain distinguishable remote Raman spectra of various samples. Results show that observed remote Raman spectra at a distance of 4 m enable us to identify silicates, carbonates, sulfates, perchlorates, water/water ice, and organics that have been found or may exist on extraterrestrial planets. Detailed Raman spectral assignments of the measured planetary materials and the feasible applications of remote Raman system for planetary explorations are discussed.

1997 ◽  
Vol 51 (5) ◽  
pp. 718-720 ◽  
Author(s):  
O.-P. Sievänen

In this article a new method to estimate optimum filter length in linear prediction is described. Linear prediction was used to enhance resolution of a spectrum. In particular, the dependence of prediction error on filter length has been studied. With calculations of simulated spectra it is shown that the prediction error falls rapidly when the filter length attains its optimum value. This effect is quite pronounced when the spectrum has a good signal-to-noise ratio and the modified covariance method is used to calculate prediction filter coefficients. The method is illustrated with applications to real Raman spectra.


2017 ◽  
Vol 24 (3) ◽  
pp. 674-678 ◽  
Author(s):  
Shengqi Chu ◽  
Lirong Zheng ◽  
Pengfei An ◽  
Hui Gong ◽  
Tiandou Hu ◽  
...  

A new quick-scanning X-ray absorption fine-structure (QXAFS) system has been established on beamline 1W1B at the Beijing Synchrotron Radiation Facility. As an independent device, the QXAFS system can be employed by other beamlines equipped with a double-crystal monochromator to carry out quick energy scans and data acquisition. Both continuous-scan and trapezoidal-scan modes are available in this system to satisfy the time scale from subsecond (in the X-ray absorption near-edge structure region) to 1 min. Here, the trapezoidal-scan method is presented as being complementary to the continuous-scan method, in order to maintain high energy resolution and good signal-to-noise ratio. The system is demonstrated to be very reliable and has been combined with in situ cells to carry out time-resolved XAFS studies.


2009 ◽  
Vol 615-617 ◽  
pp. 23-26 ◽  
Author(s):  
Peter J. Wellmann ◽  
Katja Konias ◽  
Philip Hens ◽  
Rainer Hock ◽  
Andreas Magerl

This work reports on the in-situ observation of a polytype switch during physical vapor transport (PVT) growth of bulk SiC crystals by x-ray diffraction. A standard PVT reactor for 2” and 3” bulk growth was set up in a high-energy x-ray diffraction lab. Due to the high penetration depth of the high-energy x-ray beam no modification of the PVT reactor was necessary in order to measure Laue diffraction patterns of the growing crystal with good signal to noise ratio. We report for the first time upon the in-situ observation of polytype switching during SiC bulk PVT growth.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4623
Author(s):  
Sinead Barton ◽  
Salaheddin Alakkari ◽  
Kevin O’Dwyer ◽  
Tomas Ward ◽  
Bryan Hennelly

Raman spectroscopy is a powerful diagnostic tool in biomedical science, whereby different disease groups can be classified based on subtle differences in the cell or tissue spectra. A key component in the classification of Raman spectra is the application of multi-variate statistical models. However, Raman scattering is a weak process, resulting in a trade-off between acquisition times and signal-to-noise ratios, which has limited its more widespread adoption as a clinical tool. Typically denoising is applied to the Raman spectrum from a biological sample to improve the signal-to-noise ratio before application of statistical modeling. A popular method for performing this is Savitsky–Golay filtering. Such an algorithm is difficult to tailor so that it can strike a balance between denoising and excessive smoothing of spectral peaks, the characteristics of which are critically important for classification purposes. In this paper, we demonstrate how Convolutional Neural Networks may be enhanced with a non-standard loss function in order to improve the overall signal-to-noise ratio of spectra while limiting corruption of the spectral peaks. Simulated Raman spectra and experimental data are used to train and evaluate the performance of the algorithm in terms of the signal to noise ratio and peak fidelity. The proposed method is demonstrated to effectively smooth noise while preserving spectral features in low intensity spectra which is advantageous when compared with Savitzky–Golay filtering. For low intensity spectra the proposed algorithm was shown to improve the signal to noise ratios by up to 100% in terms of both local and overall signal to noise ratios, indicating that this method would be most suitable for low light or high throughput applications.


2013 ◽  
Vol 1510 ◽  
Author(s):  
Selina Mala ◽  
Leonid Tsybeskov ◽  
Jean-Marc Baribeau ◽  
Xiaohua Wu ◽  
David J. Lockwood

ABSTRACTWe present comprehensive quantitative analysis of Raman spectra in two-(Si/SiGe superlattices) and three-(Si/SiGe cluster multilayers) dimensional nanostructures. We find that the Raman spectra baseline is due to the sample surface imperfection and instrumental response associated with the stray light. The Raman signal intensity is analyzed, and Ge composition is calculated and compared with the experimental data. The local sample temperature and thermal conductivity are calculated, and the spectrum of longitudinal acoustic phonons is explained.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Raoul R. Nigmatullin ◽  
Dumitru Baleanu ◽  
Diana Povarova ◽  
Numan Salah ◽  
Sami S. Habib ◽  
...  

Detonation nanodiamonds (NDs) have shown to be promising agents in several industries, ranging from electronic to biomedical applications. These NDs are characterized by small particle size ranging from 3 to 6 nm, while having a reactive surface and a stable inert core. Nanodiamonds can exhibit novel intrinsic properties such as fluorescence, high refractive index, and unique Raman signal making them very attractive imaging agents. In this work, we used several nanodiamond preparations for Raman spectroscopic studies. We exposed these nanodiamonds to increasing temperature treatments at constant heating rates (425–575°C) aiding graphite release. We wanted to correlate changes in the nanodiamond surface and properties with Raman signal which could be used as adetection marker. These observations would hold potential utility in biomedical imaging applications. First, the procedure of optimal linear smoothing was applied successfully to eliminate the high-frequency fluctuations and to extract the smoothed Raman spectra. After that we applied the secondary Fourier transform as the fitting function based on some significant set of frequencies. The remnant noise was described in terms of the beta-distribution function. We expect this data treatment to provide better results in biomolecule tracking using nanodiamond base Raman labeling.


2018 ◽  
Vol 170 ◽  
pp. 09005 ◽  
Author(s):  
M.-L. Gallin-Martel ◽  
L. Abbassi ◽  
A. Bes ◽  
G. Bosson ◽  
J. Collot ◽  
...  

The MoniDiam project is part of the French national collaboration CLaRyS (Contrôle en Ligne de l’hAdronthérapie par RaYonnements Secondaires) for on-line monitoring of hadron therapy. It relies on the imaging of nuclear reaction products that is related to the ion range. The goal here is to provide large area beam detectors with a high detection efficiency for carbon or proton beams giving time and position measurement at 100 MHz count rates (beam tagging hodoscope). High radiation hardness and intrinsic electronic properties make diamonds reliable and very fast detectors with a good signal to noise ratio. Commercial Chemical Vapor Deposited (CVD) poly-crystalline, heteroepitaxial and monocrystalline diamonds were studied. Their applicability as a particle detector was investigated using α and β radioactive sources, 95 MeV/u carbon ion beams at GANIL and 8.5 keV X-ray photon bunches from ESRF. This facility offers the unique capability of providing a focused (~1 μm) beam in bunches of 100 ps duration, with an almost uniform energy deposition in the irradiated detector volume, therefore mimicking the interaction of single ions. A signal rise time resolution ranging from 20 to 90 ps rms and an energy resolution of 7 to 9% were measured using diamonds with aluminum disk shaped surface metallization. This enabled us to conclude that polycrystalline CVD diamond detectors are good candidates for our beam tagging hodoscope development. Recently, double-side stripped metallized diamonds were tested using the XBIC (X Rays Beam Induced Current) set-up of the ID21 beamline at ESRF which permits us to evaluate the capability of diamond to be used as position sensitive detector. The final detector will consist in a mosaic arrangement of double-side stripped diamond sensors read out by a dedicated fast-integrated electronics of several hundreds of channels.


2014 ◽  
Vol 1 (1) ◽  
Author(s):  
G. Tosolini ◽  
J. M. Michalik ◽  
R. Córdoba ◽  
J. M. de Teresa ◽  
F. Pérez-Murano ◽  
...  

AbstractWe present the magnetic characterization of cobalt wires grown by focused electron beam-induced deposition (FEBID) and studied using static piezoresistive cantilever magnetometry. We have used previously developed high force sensitive submicron-thick silicon piezoresistive cantilevers. High quality polycrystalline cobalt microwires have been grown by FEBID onto the free end of the cantilevers using dual beam equipment. In the presence of an external magnetic field, the magnetic cobalt wires become magnetized, which leads to the magnetic field dependent static deflection of the cantilevers. We show that the piezoresistive signal from the cantilevers, corresponding to a maximum force of about 1 nN, can be measured as a function of the applied magnetic field with a good signal to noise ratio at room temperature. The results highlight the flexibility of the FEBID technique for the growth of magnetic structures on specific substrates, in this case piezoresistive cantilevers.


1983 ◽  
Vol 61 (10) ◽  
pp. 1462-1473 ◽  
Author(s):  
J.-M. Flaud ◽  
C. Camy-Peyret ◽  
J. W. C. Johns

The pure rotation spectrum of hydrogen sulfide has been recorded between 50 and 320 cm−1 with a Fourier transform spectrometer at an apodized resolution of 0.005 cm−1. This high resolution and a good signal-to-noise ratio lead to a significant improvement in the accuracy of the wavenumbers of the rotational transitions of the three isotopic species [Formula: see text], [Formula: see text], and [Formula: see text] that were observed in natural abundance. These rotational transitions, together with the available microwave data, have been included in a least squares fit leading to the determination of precise rotational constants for each isotopic species. Finally, these constants have been used to calculate precisely the absorption of natural hydrogen sulfide in the far-infrared region of the spectrum.


2021 ◽  
Author(s):  
Xue-Lu Liu ◽  
Yu-Chen Leng ◽  
Miao-Ling Lin ◽  
Xin Cong ◽  
Ping-Heng Tan

Sign in / Sign up

Export Citation Format

Share Document