scholarly journals Design of a New Seismoelectric Logging Instrument

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8489
Author(s):  
Liangchen Zhang ◽  
Xiaodong Ju ◽  
Junqiang Lu ◽  
Baiyong Men ◽  
Weiliang He

To increase the accuracy of reservoir evaluation, a new type of seismoelectric logging instrument was designed. The designed tool comprises the invented sonde-structured array complex. The tool includes several modules, including a signal excitation module, data acquisition module, phased array transmitting module, impedance matching module and a main system control circuit, which are interconnected through high-speed tool bus to form a distributed architecture. UC/OS-II was used for the real-time system control. After constructing the experimental measurement system prototype of the seismoelectric logging detector, its performance was verified in the laboratory. The obtained results showed that the consistency between the multi-channel received waveform amplitude and benchmark spectrum was more than 97%. The binary phased linear array transmitting module of the instrument can realize 0° to 20° deflection and directional radiation. In the end, a field test was conducted to verify the tool’s performance in downhole conditions. The results of this test proved the effectiveness of the developed seismoelectric logging tool.

Author(s):  
P.I. Tarasov

Research objective: studies of economic and transport infrastructure development in the Arctic and Northern Territories of Russia. Research methodology: analysis of transport infrastructure in the Republic of Sakha (Yakutia) and the types of railways used in Russia. Results: economic development of any region is proportional to the development of the road transport infrastructure and logistics. When a conventional railway is operated in the Arctic conditions, it is not always possible to maintain a cargo turnover that would ensure its efficient use, and transshipment from one mode of transport to another is very problematic. A new type of railway is proposed, i.e. a light railway. Conclusions: the proposed new type of transport offers all the main advantages of narrow gauge railroads (high speed of construction, efficiency, etc.) and helps to eliminate their main disadvantage, i.e. the need for transloading when moving from a narrow gauge to the conventional one with the width of 1520 mm, along with a significant reduction in capital costs.


1995 ◽  
Vol 117 (4) ◽  
pp. 635-641 ◽  
Author(s):  
S. R. Kidd ◽  
J. S. Barton ◽  
P. Meredith ◽  
J. D. C. Jones ◽  
M. A. Cherrett ◽  
...  

This paper describes the design, operation, construction, and demonstration of a new type of high-bandwidth unsteady temperature sensor based on fiber optics, and capable of operating in a high-speed multistage research compressor with flow representative of jet engine conditions. The sensing element is an optical coating of zinc selenide deposited on the end of an optical fiber. During evaluation in aerodynamic testing, a 1 K gas temperature resolution was demonstrated at 9.6 kHz and an upper bandwidth limit of 36 kHz achieved.


1976 ◽  
Vol 190 (1) ◽  
pp. 367-378 ◽  
Author(s):  
G. R. Wray

The design of mechanisms for use in practical machinery applications is often of a trial-and-error nature based on traditional practice. Much emphasis has been given to the theory of mechanisms in recent years but this has yet to find wide practical application. This paper is a case study of how a basic idea, conceived by University-based inventors and intended to improve a slow method of making a textile pile fabric, became a reality in the form of a completely new type of high-speed textile machine for making an improved textile product, all within a time scale of four years. It also shows how recent University researches are further advancing its potential from both the machinery manufacturing and textile technology aspects. Step-by-step from the early experimental stages, it illustrates how the challenges of developing the novel mechanisms required for this unconventional machine and process were met by combining practical experience of traditional machinery design with theoretical investigations based on the new techniques of mechanism analysis and synthesis.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 44
Author(s):  
Yi Ge ◽  
Zhenbo Tong ◽  
Renjie Li ◽  
Fen Huang ◽  
Jiaqi Yu

Respimat®Soft MistTM is a newly developed spray inhaler. Different from traditional nebulizers, metered-dose inhalers, and dry powder inhalers, this new type of inhaler can produce aerosols with long duration, relatively slow speed, and a high content of fine particles. Investigating the effect of the key geometric parameters of the device on the atomization is of great significance for generic product development and inhaler optimization. In this paper, a laser high-speed camera experimental platform is built, and important parameters such as the geometric pattern and particle size distribution of the Respimat®Soft MistTM are measured. Computational fluid dynamics (CFD) and the volume of fluid method coupled with the Shear Stress Transport (SST) k-ω turbulence model are applied to simulate the key geometric parameters of the device. The effects of geometric parameters on the spray velocity distribution and geometric pattern are obtained. The angle of flow collision, the sphere size of the central divider and the length and width of the flow channel show significant impacts on the spray atomization.


2018 ◽  
pp. 188-193
Author(s):  
Sergey A. Golubin ◽  
Vladimir S. Nikitin ◽  
Roman B. Belov

The active development of robotics requires increasingly complex remote control devices. The remote control devices are increasingly large, complex, and expensive. They decrease economic efficiency of robotics and increase their price. The scientific task is the research into possibility of applying optical ministicks on the basis of light emitting diodes as the new type basic multifunctional controls of unified human­machine interfaces allowing us to control commonly known robotic equipment types using identical devices. During the research original ergonomic methods of purposeful combination of two ministicks on two actuating levers were used so that to provide convenience of tactile control of various robots without visual contact with controls. As a result of the research, new controls were created and patented. They became known as “polyjoysticks” (patent of Russian Federation No. 2497177) and allow controlling engineering facilities having up to 20 degrees of freedom which exceeds the similar parameters of known controls by factor of 3 to 5. Due to combined use of optical ministicks, two polyjoysticks and a video mask, a new generalpurpose generation humanmachine interface was created. It allows controlling various robots and vehicles, from tractor to aircraft. The discussion of the obtained results was carried out by comparing them with parameters of control panels of different robotics systems. The analysis of the comparison results has shown that the controls based on polyjoysticks and digital optical ministicks on the basis of light emitting diodes have the best indices in terms of implemented among known control devices, in terms of ratio of functionality to weight and volume of the devices. New interfaces have already been applied for developing multiagent robotic system control system for fire forest extinguishing.


2019 ◽  
Vol 179 (4) ◽  
pp. 75-79
Author(s):  
Łukasz GRABOWSKI ◽  
Paweł KARPIŃSKI ◽  
Grzegorz BARAŃSKI

This paper presents the results of experimental studies of the opposed-piston diesel engine. This engine was designed during one of the stages of the research on a new-type drive unit for gyrocopter applications. In order to conduct research, a special test stand as well as control and measurement systems were developed. As part of the work on the engine, the fuel injection system, engine temperature control system and measurement systems were designed. In addition, a computer program has been developed for the fuel injection system control (injectors, valves fuel pressure regulators). The paper presents the results of the preliminary tests for a single value of engine speed (1500 rpm) and three values of load defined by torque. The measured value of the indicated pressure made it possible to calculate the maximum pressure. The results obtained from the bench tests were analyzed.


Leonardo ◽  
2010 ◽  
Vol 43 (3) ◽  
pp. 308-309
Author(s):  
Eunjung Han ◽  
Chee-Onn Wong ◽  
Keechul Jung ◽  
Kyung Ho Lee

Emotion gesture art is a new type of user modeling and representation in a form of aesthetic art. It consists of a unique combination of color, sound and animation (shape) that in itself creates the same emotional feeling for spectators. Emotion gesture art takes the body posture expression and remaps the communication of emotions into an aesthetic representation. This paper also presents an emotion gesture art installation (eG-art), a system prototype for affective computing. This installation will allow a smart blend of a system for affective computing with aesthetic art representation.


Sign in / Sign up

Export Citation Format

Share Document