scholarly journals A New Wearable System for Sensing Outdoor Environmental Conditions for Monitoring Hyper-Microclimate

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 502
Author(s):  
Roberta Jacoby Cureau ◽  
Ilaria Pigliautile ◽  
Anna Laura Pisello

The rapid urbanization process brings consequences to urban environments, such poor air quality and the urban heat island issues. Due to these effects, environmental monitoring is gaining attention with the aim of identifying local risks and improving cities’ liveability and resilience. However, these environments are very heterogeneous, and high-spatial-resolution data are needed to identify the intra-urban variations of physical parameters. Recently, wearable sensing techniques have been used to perform microscale monitoring, but they usually focus on one environmental physics domain. This paper presents a new wearable system developed to monitor key multidomain parameters related to the air quality, thermal, and visual domains, on a hyperlocal scale from a pedestrian’s perspective. The system consisted of a set of sensors connected to a control unit settled on a backpack and could be connected via Wi-Fi to any portable equipment. The device was prototyped to guarantee the easy sensors maintenance, and a user-friendly dashboard facilitated a real-time monitoring overview. Several tests were conducted to confirm the reliability of the sensors. The new device will allow comprehensive environmental monitoring and multidomain comfort investigations to be carried out, which can support urban planners to face the negative effects of urbanization and to crowd data sourcing in smart cities.

Author(s):  
L. Petry ◽  
T. Meiers ◽  
D. Reuschenberg ◽  
S. Mirzavand Borujeni ◽  
J. Arndt ◽  
...  

Abstract. This paper presents the design and the results of a novel approach to predict air pollutants in urban environments. The objective is to create an artificial intelligence (AI)-based system to support planning actors in taking effective and adequate short-term measures against unfavourable air quality situations. In general, air quality in European cities has improved over the past decades. Nevertheless, reductions of the air pollutants particulate matter (PM), nitrogen dioxide (NO2) and ground-level ozone (O3), in particular, are essential to ensure the quality of life and a healthy life in cities. To forecast these air pollutants for the next 48 hours, a sequence-to-sequence encoder-decoder model with a recurrent neural network (RNN) was implemented. The model was trained with historic in situ air pollutant measurements, traffic and meteorological data. An evaluation of the prediction results against historical data shows high accordance with in situ measurements and implicate the system’s applicability and its great potential for high quality forecasts of air pollutants in urban environments by including real time weather forecast data.


Author(s):  
Gayatri Doctor ◽  
Payal Patel

Air pollution is a major environmental health problem affecting everyone. An air quality index (AQI) helps disseminate air quality information (almost in real time) about pollutants like PM10, PM2.5, NO2, SO2, CO, O3, etc. In the 2018 environmental performance index (EPI), India ranks 177 out of 180 countries, which indicates a need for awareness about air pollution and air quality monitoring. Out of the 100 smart cities in the Indian Smart City Mission, which is an urban renewal program, many cities have considered the inclusion of smart environment sensors or smart poles with environment sensors as part of their proposals. Internet of things (IoT) environmental monitoring applications can monitor (in near real time) the quality of the air in crowded areas, parks, or any location in the city, and its data can be made publicly available to citizens. The chapter describes some IoT environmental monitoring applications being implemented in some of the smart cities like Surat, Kakinada.


2019 ◽  
Vol 24 (1) ◽  
pp. 15
Author(s):  
Yolanda Baca Gómez ◽  
Hugo Estrada Esquivel ◽  
Alicia Martínez Rebollar ◽  
Daniel Villanueva Vásquez

Smart City applications aim to improve the quality of life of citizens. Applying technologies of the Internet of Things (IoT) to urban environments is considered as a key of the development of smart cities. In this context, air pollution is one of the most important factors affecting the quality of life and the health of the increasing urban population of industrial societies. For this reason, it is essential to develop applications that allow citizens monitoring the concentration of pollutants and avoid places with high levels of pollution. Due to the increasing use of IoT in different areas, there are arising platforms which deal with the challenges IoT implies, such as FIWARE, which provides technologies to facilitate the development of IoT applications. In this paper, an Air Quality Monitoring Unit using Cloudino and Arduino devices and FIWARE technologies is presented. Through Cloudino and Arduino, the monitoring unit gather data from various sensors and transforms the data in a FIWARE data model. Then, the measurements are sent to the Orion Context Broker (OCB), which is a software component provided by FIWARE. The Orion Context Broker allows to manage and publish the data to be consumed by users and applications.


Author(s):  
I. V. May ◽  
A. A. Kokoulina ◽  
S. Yu. Balashov

Introduction. The city of Chita of Zabaikalsky region is one of the cities of Russia, priority on level of pollution of atmosphere. Of the order of 130 impurities emitted by the sources of the city, 12 are monitored at 5 posts of the Roshydromet network. Maximum monthly average concentrations are formed by benz (a) pyrene (up to 56.8 MPC), hydrogen sulfide (12.3 MPC), suspended particles (up to 4PDC), phenol (up to 3.6 MPC). Significant emissions (59.73 thousand tons in 2018) are aggravated by the use of coal as a fuel by heat and power enterprises and the private sector, climatic and geographical features. Within the framework of the Federal project “Clean Air” of the national project “Ecology”, it is envisaged to reduce the gross emission of pollutants into the atmosphere of Chita by 8.75 thousand tons by 2024, which should lead to a significant improvement in the safety and quality of life of citizens. It is necessary to identify the most “risky “components of pollution for health.It is important to understand: whether the environmental monitoring system reflects the real picture of the dangers posed by pollution of the city’s atmosphere; whether there is a need to optimize the monitoring system for the subsequent assessment of the effectiveness and efficiency of measures; what impurities and at what points should be monitored in the interests of the population, administration and economic entities implementing air protection measures.The aim of the study is to develop recommendations for optimizing the program of environmental monitoring of air quality in the city of Chita, taking into account the criteria of danger to public health for the subsequent evaluation of the effectiveness and effectiveness of the Federal project “Clean Air”.Materials and methods. Justification of optimization of monitoring programs was carried out through the calculation of hazard indices, considering: the mass of emissions and toxicological characteristics of each chemical; the population under the influence. A vector map of the city with a layer “population density” was used as a topographic base. The indices were calculated for regular grid cells covering the residential area. For each cell, the repeatability of winds of 8 points from the priority enterprises and the population within the calculated cell were taken into account. As a result, each calculation cell was characterized by a total coefficient, taking into account the danger of potential impacts of emissions. Based on the results of the assessments, recommendations were formulated to optimize the placement of posts in the city and the formation of monitoring programs.Results. Indices of carcinogenic danger to the health of the population of Chita ranged from 584,805. 96 to 0.03 (priorities: carbon (soot), benzene, benz (a) pyrene); indices of non-carcinogenic danger — from 1,443,558. 24 to 0.00 (priorities: sulfur dioxide, inorganic dust containing 70–20% SiO2, fuel oil ash). The greatest danger to public health stationary sources of emissions form in the North-Western, Western and South-Eastern parts of the city. Roshydromet posts in these zones are absent.Conclusions. As part of the objectives of the project “Clean Air”, it is recommended to Supplement the existing state network of observations of atmospheric air quality in Chita with two posts; to include manganese, xylene, vanadium pentoxide in the monitoring programs, to carry out the determination of Benz(a)pyrene et all posts, which will allow to fully and adequately assess the danger of emissions of economic entities, as well as the effectiveness and efficiency of the provided air protection measures.


1989 ◽  
Vol 111 (3) ◽  
pp. 398-403 ◽  
Author(s):  
G. M. Cornetti ◽  
P. P. Messori ◽  
C. Operti

Main aspects concerning the development of a burner-assisted ceramic particulate trap for diesel engines equipping urban buses have been examined. First of all the basic phenomena causing particulate accumulation inside the filter and chemical and physical parameters controlling regeneration have been studied. Then systematic measurements were performed in different running conditions on an urban bus equipped with a ceramic filter using a diesel fuel burner to start regeneration in order to verify the theoretical approach. These tests showed that: (1) The amount of particulate collected by the trap is a function of the different flat and/or hilly circuits inside the city; (2) regeneration has to be started with a proper amount of particulate collected (too little does not allow complete regeneration, too much is dangerous for trap life). Therefore an on-line continuous monitoring system of the particulate collected has been developed. When a certain level is exceeded, the filter is bypassed and regeneration starts. The system is based on the direct measurement of the exhaust flow by means of a Venturi and the pressure loss on the trap. The amount of particulate is defined by real time comparison of Venturi differential pressure and filter pressure loss. Urban buses were purposely designed in order to be equipped with a ceramic particulate trap plus the control unit. Tests of the system have been successfully performed on the buses operated on flat and hilly circuits inside the city.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 286
Author(s):  
Dorina Camelia Ilieș ◽  
Florin Marcu ◽  
Tudor Caciora ◽  
Liliana Indrie ◽  
Alexandru Ilieș ◽  
...  

Poor air quality inside museums is one of the main causes influencing the state of conservation of exhibits. Even if they are mostly placed in a controlled environment because of their construction materials, the exhibits can be very vulnerable to the influence of the internal microclimate. As a consequence, museum exhibits must be protected from potential negative effects. In order to prevent and stop the process of damage of the exhibits, monitoring the main parameters of the microclimate (especially temperature, humidity, and brightness) and keeping them in strict values is extremely important. The present study refers to the investigations and analysis of air quality inside a museum, located in a heritage building, from Romania. The paper focuses on monitoring and analysing temperature of air and walls, relative humidity (RH), CO2, brightness and particulate matters (PM), formaldehyde (HCHO), and total volatile organic compounds (TVOC). The monitoring was carried out in the Summer–Autumn 2020 Campaign, in two different exhibition areas (first floor and basement) and the main warehouse where the exhibits are kept and restored. The analyses aimed both at highlighting the hazard induced by the poor air quality inside the museum that the exhibits face. The results show that this environment is potentially harmful to both exposed items and people. Therefore, the number of days in which the ideal conditions in terms of temperature and RH are met are quite few, the concentration of suspended particles, formaldehyde, and total volatile organic compounds often exceed the limit allowed by the international standards in force. The results represent the basis for the development and implementation of strategies for long-term conservation of exhibits and to ensure a clean environment for employees, restorers, and visitors.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4916
Author(s):  
Ali Usman Gondal ◽  
Muhammad Imran Sadiq ◽  
Tariq Ali ◽  
Muhammad Irfan ◽  
Ahmad Shaf ◽  
...  

Urbanization is a big concern for both developed and developing countries in recent years. People shift themselves and their families to urban areas for the sake of better education and a modern lifestyle. Due to rapid urbanization, cities are facing huge challenges, one of which is waste management, as the volume of waste is directly proportional to the people living in the city. The municipalities and the city administrations use the traditional wastage classification techniques which are manual, very slow, inefficient and costly. Therefore, automatic waste classification and management is essential for the cities that are being urbanized for the better recycling of waste. Better recycling of waste gives the opportunity to reduce the amount of waste sent to landfills by reducing the need to collect new raw material. In this paper, the idea of a real-time smart waste classification model is presented that uses a hybrid approach to classify waste into various classes. Two machine learning models, a multilayer perceptron and multilayer convolutional neural network (ML-CNN), are implemented. The multilayer perceptron is used to provide binary classification, i.e., metal or non-metal waste, and the CNN identifies the class of non-metal waste. A camera is placed in front of the waste conveyor belt, which takes a picture of the waste and classifies it. Upon successful classification, an automatic hand hammer is used to push the waste into the assigned labeled bucket. Experiments were carried out in a real-time environment with image segmentation. The training, testing, and validation accuracy of the purposed model was 0.99% under different training batches with different input features.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 675
Author(s):  
Hugo Savill Russell ◽  
Louise Bøge Frederickson ◽  
Ole Hertel ◽  
Thomas Ellermann ◽  
Steen Solvang Jensen

NOx is a pervasive pollutant in urban environments. This review assesses the current state of the art of photocatalytic oxidation materials, designed for the abatement of nitrogen oxides (NOx) in the urban environment, and typically, but not exclusively based on titanium dioxide (TiO2). Field trials with existing commercial materials, such as paints, asphalt and concrete, in a range of environments including street canyons, car parks, tunnels, highways and open streets, are considered in-depth. Lab studies containing the most recent developments in the photocatalytic materials are also summarised, as well as studies investigating the impact of physical parameters on their efficiency. It is concluded that this technology may be useful as a part of the measures used to lower urban air pollution levels, yielding ∼2% NOx removal in the immediate area around the surface, for optimised TiO2, in some cases, but is not capable of the reported high NOx removal efficiencies >20% in outdoor urban environments, and can in some cases lower air quality by releasing hazardous by-products. However, research into new material is ongoing. The reason for the mixed results in the studies reviewed, and massive range of removal efficiencies reported (from negligible and up to >80%) is mainly the large range of testing practices used. Before deployment in individual environments site-specific testing should be performed, and new standards for lab and field testing should be developed. The longevity of the materials and their potential for producing hazardous by-products should also be considered.


Sign in / Sign up

Export Citation Format

Share Document