scholarly journals Absolute and Relative Strength, Power and Physiological Characteristics of Indian Junior National-Level Judokas

Sports ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 14
Author(s):  
Dale M. Harris ◽  
Kristina Kendall ◽  
G. Gregory Haff ◽  
Christopher Latella

The physical qualities that underpin successful junior judokas requires continuing investigation. We investigated the physical and physiological characteristics of junior national level judokas. We tested 25 (15 male, 10 female) Indian judokas for absolute and relative strength (back-squat and bench-press one-repetition maximum (1RM) as well as isometric handgrip), aerobic (RAMP test) and lower-body anaerobic power (Wingate 6-s sprint and countermovement jump), change-of-direction (5-0-5 test) and speed (30 m sprint). Athletes were grouped according to national-level competition placing (gold-medal winners (GM; n = 8), all medal winners (MW; n = 13), non-medallists (NM; n = 12), and NM plus silver and bronze; all others (AO; n = 17)). Stepwise discriminant function analysis determined characteristics likely to predict successful performance. Independent t-tests and effect size (Hedge’s g) analyses were performed between groups. GM demonstrated greater lower-body absolute (20.0%; g = 0.87, p = 0.046) and relative 1RM strength (21.0%; g = 0.87, p = 0.047), and greater lower-body absolute (25.4%; g=1.32, p=0.004) and relative (27.3%; g = 1.27, p = 0.005) anaerobic power compared to AO. Furthermore, anaerobic power can correctly predict 76.5% and 62.5% of AO and GM athletes, respectively. No differences were observed between MW and NM groups. The results suggest the importance of lower-body strength and power for junior national-level judokas and provides information for professionals working with these athletes.

Sports ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 160 ◽  
Author(s):  
Whitney Tramel ◽  
Robert G. Lockie ◽  
Keston G. Lindsay ◽  
J. Jay Dawes

Volleyball is a sport comprised of multiple explosive efforts and multidirectional change of direction speed (CODS) actions. Since strength underpins both of these abilities, it is important to explore the relationship between these variables in order to develop strength and conditioning programs to optimize performance. The purpose of this study is to determine if a relationship exists between absolute and relative strength and measures of power and CODS in collegiate volleyball players. Archived testing data from ten (n = 10, age: 19.1 ± 1.2 yrs, Ht: 173.1 ± 6.64 cm, Wt: 67 ± 7.04 kg) female DII collegiate volleyball players were analyzed. These data included: block vertical jump (Block VJ), approach vertical jump (Approach VJ), a repeat jump test (i.e., four consecutive VJs), modified T-test, 5-0-5 agility test, a single leg triple hop test, and a 1-3RM deadlift. Significant large correlations were observed between relative strength and the repeat jump test, modified T-test, and 5-0-5 agility test. Significant correlations were also observed between absolute strength and the modified T-test. These results indicate that strength and conditioning professionals should emphasize the development of both absolute and relative lower-body strength to improve measures of power and agility in collegiate volleyball players.


Author(s):  
Tim J. Mosey ◽  
Lachlan J.G. Mitchell

Objectives: The purpose of this study was to document the longitudinal strength and power characteristic changes and race performance changes of a skeleton athlete. Method: Longitudinal strength and power changes were assessed with strength and power diagnostic testing over a 9-year period. Trends over 9 years for relative strength were analyzed using a linear model. Push-start time was recorded across multiple tracks. Trends over 9 years for start performance at each track were assessed using a mixed-effects linear model to account for the impact of different tracks. Lower-body strength and power changes were assessed via a 1-repetition-maximum squat and a body-weight countermovement jump. The relationship between strength and power changes was assessed over time. The relationship between strength changes and start performance was determined by assessing the fixed effect of relative strength changes on push-start time. Results: Relative lower-body strength ranged from 1.6 kg per body weight to 1.9 kg per body weight and showed a significant mean improvement of 0.05 kg per body weight per year (R2 = .71, P < .01). A negative correlation (R2 = .79) between relative strength changes and push-start performance across multiple tracks was found. The mixed-effects model indicated that push-start time improved significantly year to year (0.02 s; P < .001; R2 = .74) when controlling for the effect of track. Conclusions: The longitudinal analysis of push-start time and the associations with changes in strength suggest that training this quality can have a positive effect on push-start performance.


Sports ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 45 ◽  
Author(s):  
Robert Lockie ◽  
Brett Post ◽  
J. Dawes

This study investigated relationships between shorter (505, change-of-direction (COD) deficit as a derived physical quality) and longer (Illinois agility test; IAT) COD tests with linear speed, lower-body power (multidirectional jumping), and strength in recreationally-trained individuals. Twenty-one males and 22 females (similar to collegiate club-sport and tactical athletes) were assessed in: 505 and COD deficit from each leg; IAT; 20 m sprint; vertical jump (VJ height, peak anaerobic power measured in watts (PAPw), power-to-body mass ratio); standing broad jump; lateral jump (LJ) from each leg; and absolute and relative isometric midthigh pull (IMTP) strength. Partial correlations calculated sex-determined relationships between the COD and performance tests, with regression equations calculated (p < 0.05). The 505 and IAT correlated with all tests except PAPw and absolute IMTP (r = ±0.43–0.71). COD deficit correlated with the LJ (r = −0.34–0.60). Left- and right-leg 505 was predicted by sex, 20 m sprint, and left-leg LJ (70–77% explained variance). Right-leg COD deficit was predicted by sex and left-leg LJ (27% explained variance). IAT was predicted by sex, 20 m sprint, right-leg LJ, and relative IMTP (84% explained variance). For individuals with limited training time, improving linear speed, and relative lower-body power and strength, could enhance shorter and longer COD performance.


2017 ◽  
Vol 12 (1) ◽  
pp. 50-55 ◽  
Author(s):  
Christina Carr ◽  
John J. McMahon ◽  
Paul Comfort

Purpose:Previous research has investigated changes in athletes’ strength, power, and speed performances across the competitive season of many sports, although this has not been explored in cricketers. The aim of this study was to investigate changes in lower-body strength and jump and sprint performances across an English county cricket season.Methods:Male cricketers (N = 12; age 24.4 ± 2.3 y, body mass 84.3 ± 9.9 kg, height 184.1 ± 8.1 cm) performed countermovement jumps (CMJs) and 20-m sprints on 4 separate occasions and back-squat strength testing on 3 separate occasions across a competitive season.Results:Both absolute (12.9%, P = .005, effect size [ES] = 0.53) and relative lower-body strength (15.8%, P = .004, ES = 0.69) and CMJ height (5.3%, P = .037, ES = 0.42) improved significantly over the preseason training period, although no significant change (1.7%, P > .05) in sprint performance was observed. In contrast, absolute (14.3%, P = .001, ES = 0.72) and relative strength (15.0%, P = .001, ES = 0.77), CMJ height (4.2%, P = .023, ES = 0.40), and sprint performance (3.8%, P = .012, ES = 0.94) declined significantly across the season.Conclusions:The results of this study show that neither the demands of the competitive cricket season nor current in-season training practices provide a sufficient stimulus to maintain strength, jump, and sprint performances in these cricketers. Therefore, coaches should implement a more-frequent, higher-load strength-training program across the competitive cricket season.


Sports ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 106 ◽  
Author(s):  
Emily Andersen ◽  
Robert Lockie ◽  
J. Dawes

The purpose of this study was to investigate the relationships between absolute and relative lower-body strength on predictors of athletic performance among Division II collegiate women’s soccer players. Archived pre-season testing data for seventeen (n = 17) female National Collegiate Athletics Association (NCAA) Division II soccer players were analyzed, including: vertical jump, 3RM back squat, 505-agility, modified T-test, 10 m and 30 m sprint, and 20 m multistage fitness test (20 m MSFT). Relative strength was calculated based on the estimated 1RM back squat divided by the athlete’s body mass. Significant correlations were discovered between absolute lower-body strength and 505-agility (Right: r = −0.51, p < 0.05; Left: r = −0.59, p < 0.05), modified T-test (r = −0.55, p < 0.05), 10 m and 30 m (r = −0.59, p < 0.05; r = −0.54, p < 0.05), and sprint performance. Relative lower-body strength showed significant correlations with vertical jump (r = 0.54, p < 0.05), 505-agility (Right: r = −0.58, p < 0.05; Left: r = −0.67, p < 0.01), modified T-test (r = −0.75, p < 0.01), 10 m and 30 m (r = −0.59 p < 0.05; r = −0.67, p < 0.01), and the 20 m MSFT (r = 0.58, p < 0.05). These results indicate that strength and conditioning coaches should emphasize the development of absolute and relative lower-body strength with their players to improve power, agility, and speed performance.


Author(s):  
Jonpaul Nevin ◽  
Paul M. Smith

Purpose: To explore the relationship between absolute and relative upper-body strength and selected measures of handcycling performance. Methods: A total of 13 trained H3/H4-classified male handcyclists (mean [SD] age 37 [11] y; body mass 76.6 [10.1] kg; peak oxygen consumption 2.8 [0.6] L·min−1; relative peak oxygen consumption 36.5 [10] mL·kg·min−1) performed a prone bench-pull and bench-press 1-repetition-maximum strength assessment, a 15-km individual time trial, a graded exercise test, and a 15-second all-out sprint test. Relationships between all variables were assessed using Pearson correlation coefficient. Results: Absolute strength measures displayed a large correlation with gross mechanical efficiency and maximum anaerobic power output (P = .05). However, only a small to moderate relationship was identified with all other measures. In contrast, relative strength measures demonstrated large to very large correlations with gross mechanical efficiency, 15-km time-trial velocity, maximum anaerobic power output, peak aerobic power output, power at a fixed blood lactate concentration of 4 mmol·L−1, and peak oxygen consumption (P = .05). Conclusion: Relative upper-body strength demonstrates a significant relationship with time-trial velocity and several handcycling performance measures. Relative strength is the product of one’s ability to generate maximal forces relative to body mass. Therefore, the development of one’s absolute strength combined with a reduction in body mass may influence real-world handcycling race performance.


2017 ◽  
Vol 9 (1) ◽  
pp. 115-123
Author(s):  
Hamid Arazi ◽  
Mani Izadi

Summary Study aim: The purpose of the present research was to determine the physical and physiological features of international level karate athletes. Material and methods: Eleven male karate athletes who were ranked at the top of their weight categories participated in this study. All of them were evaluated for anthropometric, body composition, somatotype and bio-motor characteristics in detail. Results: The main results (mean ± SD) were height: 181.54 ± 4.71 cm; sitting height: 97.27 ± 3.03 cm; arm span: 185.72 ± 7.28 cm; BMI: 25.02 ± 3.32 kg ∙ m-2; Rohrer’s index: 137.68 ± 16.72; skelic index: 53.58 ± 1.29; arm span (ape) index: 1.02 ± 0.02; fat mass: 7.51 ± 4.56 kg; fat-free mass: 75.26 ± 10.04 kg; body fat: 8.66 ± 3.65; endomorphy: 2.4 ± 0.85; mesomorphy: 5.2 ± 1.13; ectomorphy: 2.11 ± 0.99; VO2max: 51.58 ± 3.39 ml ∙ kg-1 ∙ min-1; anaerobic power: 45.45 ± 4.39 W ∙ kg-1; long jump: 249.7 ± 16.81 cm; upper-body strength: 100.27 ± 15.61 kg (1.21 ± 0.07 kg ∙ kg-1); lower-body strength: 155.94 ± 19.49 kg (1.89 ± 0.14 kg ∙ kg-1); whole-body strength: 156.97 ± 21.38 kg (1.9 ± 0.13 kg ∙ kg-1) and flexibility: 37.63 ± 10.73 cm. Conclusions: A tall stature and long arm span, low body fat, markedly high mesomorphic build, moderately high aerobic power, outstanding anaerobic power, excellent lower-body explosive power, great muscular strength and high flexibility seem to be advantageous features for karate contestants.


2020 ◽  
Vol 75 (1) ◽  
pp. 161-175
Author(s):  
Michał Boraczyński ◽  
Tomasz Boraczyński ◽  
Robert Podstawski ◽  
Zbigniew Wójcik ◽  
Piotr Gronek

Abstract The purpose of this study was to assess a wide range of physiological and performance variables and investigate whether and to what extent these variables are associated with each other in soccer. Twenty-five male soccer players (25.1 ± 4.56 years; body mass, 75.2 ± 5.92 kg; body height, 180.6 ± 5.45 cm) performed: 5- and 30-m sprints (T5m and T30m, respectively), 1-repetition-maximum (1RM) half squat, maximal voluntary isometric contraction (MVIC) of the knee extensors, countermovement jump (CMJ) to obtain vertical jump height (CMJheight) and power output (CMJpower), the 10-s Wingate Anaerobic Test (WAnT) to obtain peak power (Pmax), and the 20-m multi-stage shuttle run test (MST) to evaluate aerobic capacity. 1RM, MVIC, and Pmax were normalized to body mass. Large negative correlations were found between sprint times and 1RM half back squat/BM (r = -0.510 to -0.570, r2 = 0.260–0.325, both p < 0.01) and Pmax/BM (r = -0.501, r2 = 0.251, p < 0.01). T30m most strongly and negatively correlated with CMJheight (r = -0.744, r2 = 0.554, p < 0.001). WAnT-determined Pmax showed a very large correlation between absolute Pmax and knee-extensor MVIC (r = 0.827, r2 = 0.684, p < 0.001) and large correlations between absolute Pmax and 1RM half squat (r = 0.674, r2 = 0.454, p < 0.001) and CMJpower (r = 0.579, r2 = 0.335, p < 0.01). We also identified a large inverse relationship between CMJheight and T30m (r = -0.744, r2 = 0.554, p < 0.001) and large positive correlation between CMJheight and MVIC/BM (r = 0.702, p < 0.001). The results demonstrate that elite soccer players with greater lower body strength (quantified by the MVIC of the knee extensor and the 1RM half squat) show better sprint and CMJ performance, suggesting the incorporation of soccer-specific resistance training to develop lower body musculature and therefore maximize sprinting ability. The higher correlation coefficients found between T30m and the physiological and athletic measures compared with T5m promote the use of this sprint distance when assessing performance. The use of relative measures (normalized to body mass) is advisable when comparing strength variables with sprint and CMJ performance or anaerobic power. Considering the correlations of WAnT-determined Pmax versus CMJpower, coaches should administer tests that assess jumping and linear sprint performance rather than the cycling-specific WAnT.


Author(s):  
Ian Bonder ◽  
Andrew Shim ◽  
Robert G. Lockie ◽  
Tara Ruppert

Based on current law enforcement officer (LEO) duties, musculoskeletal injury risk is elevated due to the unpredictable nature of physically demanding tasks. The purpose of this 4-week study was to determine the effectiveness of a 15-min post-shift standardized occupational specific training program. The standardized program was designed to improve lower-body strength and speed to aid physically demanding task performance. Seven male LEOs completed the program after their 12-h shift. Subjects were required to use the department fitness center to perform the 15-min standardized program consisting of a dynamic warm-up, 4 sets of 3 repetitions on hex-bar deadlift and four 20-m sprints. Two minutes of rest was required between each set of 3 repetitions on hex-bar deadlift and 1 min of rest between each 20-m sprint. A dependent T-test was used between pre-test and post-test scores for hex-bar deadlift (HBD) and sprint. Data revealed significant improvements in relative lower-body strength with HBD (p ≤ 0.001). However, insignificant results were demonstrated with the 20-m sprint (p ≤ 0.262). In conclusion, a 15-min post-shift workout can improve lower-body strength as measured by the hex-bar deadlift. However, data indicated running speed may require a different training approach to improve the 20-m sprint.


Sign in / Sign up

Export Citation Format

Share Document