scholarly journals Removal of ZnO Nanoparticles from Natural Waters by Coagulation-Flocculation Process: Influence of Surfactant Type on Aggregation, Dissolution and Colloidal Stability

2018 ◽  
Vol 11 (1) ◽  
pp. 17 ◽  
Author(s):  
Rizwan Khan ◽  
Muhammad Inam ◽  
Muhammad Iqbal ◽  
Muhammad Shoaib ◽  
Du Park ◽  
...  

The zinc oxide nanoparticles (ZnO NPs) and surfactants that are widely used in commercial and industrial products lead to the likelihood of their co-occurrence in natural water, making it essential to investigate the effect of surfactants on the fate and mobility of ZnO NPs. The present study seeks to elucidate the effect of an anionic sodium dodecyl sulfate (SDS) and a nonionic nonylphenol ethoxylate (NPEO), on ZnO NPs adsorption, aggregation, dissolution, and removal by the coagulation process. The results indicate that the presence of SDS in ZnO NPs suspension significantly reduced the ζ-potential and hydrodynamic diameter (HDD), while the effect of NPEO was found not to be significant. The sorption of SDS and NPEO by ZnO NPs were fitted with Langmuir model, but the Freundlich isotherm was more suitable for SDS at pH 9.0. Moreover, the adsorption was strongly pH-dependent due to the formation of mono-bilayer patches onto the NPs. The SDS remarkably affect the dissolution and aggregation phenomena of ZnO NPs in natural waters as compared to NPEO. Finally, the coagulation results showed that the removal efficiency of ZnO, Zn2+ and the surfactant in synthetic and wastewaters at optimum ferric chloride (FC) dosage reached around 85–98% and 20–50%, respectively. Coagulation mechanism investigation demonstrated that the cooperation of charge neutralization and adsorptive micellar flocculation (AMF) might play an important role. In summary, this study may provide new insight into the environmental behavior of coexisting ZnO NPs and surfactants in water treatment processes, and it may facilitate their sustainable use in commercial products and processes.

Author(s):  
Rizwan Khan ◽  
Muhammad Inam ◽  
Sarfaraz Khan ◽  
Andrea Jiménez ◽  
Du Park ◽  
...  

The widespread use of copper oxide nanoparticles (CuO NPs) and surfactants in various consumer products makes it likely that they coexist in aqueous environments, making it important to study the effects of surfactants on the fate and transport behavior of CuO NPs. The present study aims to investigate the influence of anionic sodium lauryl sulfate (SLS) and nonionic nonylphenol ethoxylate (NPEO, Tergitol NP-9), on CuO NPs adsorption, aggregation, and removal from water by the coagulation process. The result of the sorption study indicates that both surfactants could be adsorbed on the surface of CuO NPs, and that SLS remarkably decreases the ζ potential as well as the hydrodynamic diameter (HDD) of CuO as compared to NP-9. The kinetic aggregation study showed that both SLS and NP-9 reduced the HDD of CuO NPs and retarded the settling rates at surfactant concentrations above 0.015% (w:v) over a 24 h-period. Moreover, enhanced aggregation of CuO NPs was observed in two environmental waters as compared to pure water, which could be related to their high ionic strength. The addition of surfactants in natural waters has been shown to reduce the aggregation and sedimentation of CuO; however, the reductive effect of SLS was more pronounced than that of NP-9. Finally, the coagulation results showed that the removal efficiencies of CuO, Cu2+, and the surfactant in all tested waters at optimum ferric chloride dosage reached around 98, 95, and 85%, respectively. Furthermore, the coagulation mechanism revealed that the combination of charge neutralization and adsorptive micellar flocculation (AMF) might be involved in the removal of both pollutants. The results of the present study provide new insight into the environmental behavior of coexisting NPs and surfactants in wastewater treatment processes.


Processes ◽  
2018 ◽  
Vol 6 (9) ◽  
pp. 170 ◽  
Author(s):  
Rizwan Khan ◽  
Muhammad Inam ◽  
Du Park ◽  
Saba Zam Zam ◽  
Sookyo Shin ◽  
...  

The large-scale production and usage of zinc oxide nanoparticles (ZnO NPs) may lead to their post-release into the aquatic environment. In this study, the effect of hydrophobic/hydrophilic organic ligands on sorption and sedimentation of ZnO NPs has been systematically investigated. In addition, the coagulation efficiency of ZnO NPs, Zn2+, dissolved organic carbon (DOC), and UV254 with varying ferric chloride (FC) dosages in synthetic waters were also evaluated. The results showed that the higher concentration of organic ligands, i.e., humic acid (HA), salicylic acid (SA), and L-cysteine (L-cys) reduced the ζ-potential and hydrodynamic diameter (HDD) of particles, which enhanced the NPs stability. The adsorption of organic ligands onto ZnO NPs was fitted with the Langmuir model, with maximum adsorption capacities of 143, 40.47, and 66.05 mg/g for HA, SA and L-cys respectively. Removal of up to 95% of ZnO NPs and Zn2+ was achieved in studied waters at the effective coagulation zone (ECR), above which excess charge induced by coagulant restabilized the NPs in suspension. Moreover, the removal rate of DOC and UV254 were found to be higher in hydrophobic waters than hydrophilic waters. The width of ECR strongly depends on the characteristics of source water. The waters with hydrophobic ligand and higher UV254 values require more coagulant than hydrophilic waters to achieve the similar ZnO NPs and Zn2+ removal. The results of Fourier transform infrared (FT-IR) analysis of ZnO NPs composite contaminant flocs indicated that the combined effect of enmeshment and charge neutralization might be a possible removal mechanism. These findings may facilitate the prediction of fate, transport, and removal of ZnO NPs in the natural waters, and might contribute to risk assessment, as well as decision making about engineered nanoparticles (ENPs) in aquatic systems.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 472 ◽  
Author(s):  
Rizwan Khan ◽  
Muhammad Inam ◽  
Sarfaraz Khan ◽  
Du Park ◽  
Ick Yeom

The use of zinc oxide nanoparticles (ZnO NPs) and polybrominated diphenyl ethers (PBDPEs) in different products and applications leads to the likelihood of their co-occurrence in the aquatic system, making it important to study the effect of PBDPEs on the fate and transport of ZnO NPs. In this study, we determine the influence of PBDPEs (BDPE-47 and BDPE-209) on the colloidal stability and physicochemical properties of ZnO NPs in different aqueous matrices. The results indicated the shift in ζ potential of ZnO NP from positive to negative in the presence of both PBDPEs in all tested waters; however, the effect on the NPs surface potential was specific to each water considered. The lower concentration of the PBDPEs (e.g., 0.5 mg/L) significantly reduced the ζ potential and hydrodynamic diameter (HDD) of ZnO NP, even in the presence of high content of dissolved organic matter (DOM) in both freshwater and industrial wastewater. Moreover, both BDPE-47 and BDPE-209 impede the agglomeration of ZnO NP in simple and natural media, even in the presence of monovalent and polyvalent cations. However, the effect of BDPE-47 on the ζ potential, HDD, and agglomeration of ZnO NP was more pronounced than that of BDPE-209 in all tested waters. The results of Fourier transform infrared (FT-IR) and X-ray Photon Spectroscopy (XPS) further confirm the adsorption of PBDPEs onto ZnO NP surface via aromatic ether groups and Br elements. The findings of this study will facilitate a better understanding of the interaction behavior between the ZnO NPs and PBDPEs, which can reduce the exposure risk of aquatic organisms to both pollutants.


2003 ◽  
Vol 21 (5) ◽  
pp. 451-462 ◽  
Author(s):  
Sameer Al-Asheh ◽  
Fawzi Banat ◽  
Leena Abu-Aitah

An improvement in the adsorption capacity of naturally available bentonite towards water pollutants such as Methylene Blue dye (MBD) is certainly needed. For this purpose, sodium bentonite was activated by two methods: (1) treatment with sodium dodecyl sulphate (SDS) as an ionic surfactant and (2) thermal treatment in an oven operated at 850°C. Batch adsorption tests were carried out on removing MBD from aqueous solution using the above-mentioned bentonites. It was found that the effectiveness of bentonites towards MBD removal was in the following order: thermal-bentonite > SDS-bentonite > natural bentonite. X-Ray diffraction analysis showed that an increase in the microscopic bentonite platelets on treatment with SDS was the reason behind the higher uptake of MBD. An increase in sorbent concentration or initial pH value of the solutions resulted in a greater removal of MBD from the solution. An increase in temperature led to an increase in MBD uptake by the bentonites studied in this work. The Freundlich isotherm model was employed and found to represent the experimental data well.


2002 ◽  
Vol 2 ◽  
pp. 972-977 ◽  
Author(s):  
M.A. Mondaca ◽  
V. Campos ◽  
R. Moraga ◽  
C.A. Zaror

Pollution of aquatic systems by heavy metals has resulted in increasing environmental concern because they cannot be biodegraded. One metal that gives reason for concern due to its toxicity is chromium. Cr(VI) and Cr(III) are the principal forms of chromium found in natural waters. A chromate-resistant strain of the bacterium S. marcescens was isolated from tannery effluent. The strain was able to reduce Cr(VI) to Cr(III), and about 80% of chromate was removed from the medium. The reduction seems to occur on the cell surface. Transmission electron microscopic examination of cells revealed that particles were deposited on the outside of bacterial cells. A stable biofilm was formed in less than 10 h, reaching around 1010cfu attached per milligram of activated carbon. These findings demonstrate that immobilizedS. marcescensmight be used in industrial waste treatment processes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Woojin Lee ◽  
Jiwoo Yeop ◽  
Jungwoo Heo ◽  
Yung Jin Yoon ◽  
Song Yi Park ◽  
...  

Abstract Significant aggregation between ZnO nanoparticles (ZnO NPs) dispersed in polar and nonpolar solvents hinders the formation of high quality thin film for the device application and impedes their excellent electron transporting ability. Herein a bifunctional coordination complex, titanium diisopropoxide bis(acetylacetonate) (Ti(acac)2) is employed as efficient stabilizer to improve colloidal stability of ZnO NPs. Acetylacetonate functionalized ZnO exhibited long-term stability and maintained its superior optical and electrical properties for months aging under ambient atmospheric condition. The functionalized ZnO NPs were then incorporated into polymer solar cells with conventional structure as n-type buffer layer. The devices exhibited nearly identical power conversion efficiency regardless of the use of fresh and old (2 months aged) NPs. Our approach provides a simple and efficient route to boost colloidal stability of ZnO NPs in both polar and nonpolar solvents, which could enable structure-independent intense studies for efficient organic and hybrid optoelectronic devices.


2014 ◽  
Vol 82 (1) ◽  
pp. 22-28 ◽  
Author(s):  
Zorana N Miloradovic ◽  
Nemanja V Kljajevic ◽  
Snezana T Jovanovic ◽  
Tanja R Vucic ◽  
Ognjen D Macej

Caprine and bovine milks have a similar overall gross composition, but vary considerably in the ratios of their casein components. These differences in colloidal casein micelles could affect directly or indirectly the heat stability of caprine and bovine milks at their natural pH. In the present work, the differences in colloidal stability of caprine and bovine milk have been studied by analysing the effect of heat treatment and skimming on precipitation of proteins. Raw and heated milk samples (70 °C/5 min, 80°C/5 min and 90°C/5 min) were centrifuged at 600, 2000, and 4500 g. The amount of precipitate formed after skimming was measured and the protein composition of both precipitates and supernatants analysed using the SDS-PAGE (sodium dodecyl sulphate polyacrylamide gel electrophoresis) and densitometry. In caprine milk, the heat treatment prior to skimming had a statistically significant effect on protein precipitation. Centrifugal force had a statistically significant effect on amount of precipitate for both milks, but the amount was 2 to 4 times higher for caprine milk. When defatting the milk for electrophoresis, a centrifugal force of 600 g appeared to be the most appropriate, in order to avoid protein loss and a possible error in the interpretation of results. Results of this study could also serve as the basis for further investigations on adjusting the skimming conditions for caprine milk in industrial dairy processing environment.


2017 ◽  
Vol 14 (1) ◽  
pp. 1 ◽  
Author(s):  
Sébastien Maillette ◽  
Caroline Peyrot ◽  
Tapas Purkait ◽  
Muhammad Iqbal ◽  
Jonathan G. C. Veinot ◽  
...  

Environmental contextThe fate of nanomaterials in the environment is related to their colloidal stability. Although numerous studies have examined their homoagglomeration, their low concentration and the presence of high concentrations of natural particles implies that heteroagglomeration rather than homoagglomeration is likely to occur under natural conditions. In this paper, two state-of-the art analytical techniques were used to identify the conditions under which nanosilver was most likely to form heteroagglomerates in natural waters. AbstractThe environmental risk of nanomaterials will depend on their persistence, mobility, toxicity and bioaccumulation. Each of these parameters is related to their fate (especially dissolution, agglomeration). The goal of this paper was to understand the heteroagglomeration of silver nanoparticles in natural waters. Two small silver nanoparticles (nAg, ~3nm; polyacrylic acid- and citrate-stabilised) were covalently labelled with a fluorescent dye and then mixed with colloidal silicon oxides (SiO2, ~18.5nm) or clays (~550nm SWy-2 montmorillonite). Homo- and heteroagglomeration of the nAg were first studied in controlled synthetic waters that were representative of natural fresh waters (50μg Ag L–1; pH 7.0; ionic strength 10–7 to 10–1 M Ca) by following the sizes of the nAg by fluorescence correlation spectroscopy. The polyacrylic acid-coated nanosilver was extremely stable under all conditions, including in the presence of other colloids and at high ionic strengths. However, the citrate-coated nanosilver formed heteroaggregates in presence of both colloidal SiO2 and clay particles. Nanoparticle surface properties appeared to play a key role in controlling the physicochemical stability of the nAg. For example, the polyacrylic acid stabilized nAg-remained extremely stable in the water column, even under conditions for which surrounding colloidal particles were agglomerating. Finally, enhanced dark-field microscopy was then used to further characterise the heteroagglomeration of a citrate-coated nAg with suspensions of colloidal clay, colloidal SiO2 or natural (river) water.


Sign in / Sign up

Export Citation Format

Share Document